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This paper explains hysteretic transitions in swirling jets and models external flows of 
vortex suction devices. Toward this goal, the steady rotationally symmetric motion of 
a viscous incompressible fluid above an infinite conical stream surface of a half-angle 
8, is studied. The flows analysed are generalizations of Long's vortex. They correspond 
to the conically similar solutions of the Navier-Stokes equations and are characterized 
by circulation r, given at the surface and axial flow force 4. Asymptotic analysis and 
numerical calculations show that four (for Oe d 90") or five (for 8, > 90") solutions 
exist in some range of r, and 4. The solution branches form hysteresis loops which are 
related to jump transitions between various flow regimes. Four kinds of jump are 
found : (i) vortex breakdown which transforms a near-axis jet into a two-cell flow with 
a reverse flow near the axis and an annular jet fanning out along conical surface 8 = 
8, < 0,; (ii) vortex consolidation causing a reversal of (i); (iii) jump flow separation 
from surface 8 = 8,; and (iv) jump attachment of the swirling jet to the surface. As r, 
and/or J1 decrease, the hysteresis loops disappear through a cusp catastrophe. The 
physical reasons for the solution non-uniqueness are revealed and the results are 
discussed in the context of vortex breakdown theories. Vortex breakdown is viewed as 
a fold catastrophe. Two new striking effects are found: (i) there is a pressure peak of 
O(TE) inside the annular swirling jet; and (ii) a consolidated swirling jet forms with a 
reversed ('anti-rocket ') flow force. 

CONTENTS 

1. Introduction 
1.1. Observations of bi-stability in swirling flows 
1.2. Models of vortex suction devices 
1.3. Flow force as a control parameter 
1.4. Limitations of Long's model 
1.5. Hysteresis loops 

2. Problem formulation 
2.1. Reduction of NSE to ODE 
2.2. Boundary conditions 
2.3. The flow force 

3. Asymptotic analysis 
3.1. Reduced Euler equations 
3.2. Two-cell flow 
3.3. Regime with near-surface outflow 

10 
10 
10 
15 



2 V. Shtern and F. Hussain 

3.4. Outer flow of the near-axis jet 
3.5. Near-axis jet 
3.6. Summary of the asymptotic analysis 

4. Swirling flows in cones 
4.1. Flow regimes inside the 8, = 45" cone 
4.2. Flow regimes outside the 45" cone 

5. A flow driven by a half-line vortex 
5.1. Modification of the flow force 
5.2. Hysteresis 
5.3. cusp 

6. Pressure peak in swirling annular jets 

7. Discussion 
7.1. The physical nature of the jumps 
7.2. Dynamics of stagnation points 
7.3. Folds in the context of vortex breakdown theories 

8. Conclusions 

18 
20 
22 

23 
23 
27 

32 
32 
33 
35 

36 

38 
38 
39 
40 

42 

1. Introduction 

1 . l .  Observations of bi-stability in swirling flows 
Swirling flows in nature and technology have many striking and even enigmatic 
features that need thorough analysis and interpretation. In addition to the well-known 
examples of intriguing phenomena such as the RanqueHilsch effect and vortex 
breakdown, several new ones are revealed here: jump separation and attachment of 
near-surface swirling flows; a strong peak of pressure inside annular swirling jets; and 
a paradoxical, upstream-directed flow force in a consolidated swirling jet. These 
intriguing features are not only of intrinsic scientific interest but also very important 
for technological applications. Perhaps the most problematic feature of swirling flows 
is their bi- or multi-stability which can lead to abrupt transitions between different 
states, occurring at the same values of control parameters. Similar bi-stability is 
observed in tornadoes (Burggraf & Foster 1977; Shtern & Hussain 1993, hereinafter 
referred to as SH), vortices above delta wings (Schmucker & Gersten 1988) as well as 
in the inner and outer flow domains of vortex devices (Goldshtik 1990; Spotar' & 
Terekhov 1987). These abrupt or jump transitions are most dangerous for aircraft 
because the resultant changes in lift and drag can lead to a loss of flight control. This 
has been the main practical motivation for numerous studies of vortex breakdown 
since its discovery by Peckham & Atkinson 1957). 

Although not necessarily as dangerous, several highly undesirable sequences of 
transitions between flow states occur in various vortex devices. Figure l ( a )  shows a 
schematic of a 'focused' suction device (Boguslavskii & Ivanskii 1987) to remove 
hazardous fumes or aerosols generated at a distant spot. Fresh air pumped through 
guidevane 1 forms swirling outflow 2, turns around near stagnation point 3, collects 
hazardous fumes from pollution source 4, and is sucked out through axial pipe 5. 
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FIGURE 1. Schematic of suction devices (a, c) and their models (b, d )  with forward (a, b) and back 
(c, d )  blowing. (1) Swirling guidevane for pumped fresh air, (2) swirling outflow, (3) stagnation point, 
(4) source of pollution, ( 5 )  orifice for suction of polluted air, (6) separating air screen, (7) typical 
streamline, (L) Lyahovsky diffuser. Cones 0 = 8, model air screen 6, where circulation K is given. 
Axial flow force J acts on surface S with normal n. Typical streamlines are shown by curves with 
arrows. The chain line is a symmetry axis. 

Stream 6 separates region 7 of circulatory motion from the outer flow 8. The swirling 
annular jet 6 serves as an air screen that provides a long-range suction effect and 
prevents dispersal of the fumes. However, a strong enough external disturbance can 
cause a drastic contraction of the circulatory ‘bubble’, resulting in the fumes being 
blown away and dispersed. To avoid this undesirable possibility, a modified device has 
been invented (Spotar’ et al. 1994); see figure l(c) in which a new component- 
Lyahovsky diffuser L - is used to turn back swirling outflow 2 by the Coanda effect and 
to prevent the bubble contraction. 

1.2. Models of vortex suction devices 
One motivation of this paper is to model external flows of suction devices and to 
study and predict the jump transitions. For this we simplify the practical flows by 
modelling a part of separating boundary 6 in figure l (u)  by conical stream surface 
8 = 8, (see figure I b). To model the flow outside the device shown in figure 1 (c) we 
increase the included angle BC of the cone to correspond with the swirling air screen 
(figure 1 d) .  Therefore, surface 8 = 0, is impermeable but not rigid in the model and this 
is an important point. 

In general, the flow similarity and no-slip condition are not compatible when there 
are no body forces or other motion sources (singularities) inside a flow region. Squire 
(1952) was the first to discover this; see also Yih et al. (1982). The similarity solution 
with the no-slip coindition is trivial (zero) because there are no motion sources. In the 
absence of other driving forces, a flow can be driven only by a given non-zero velocity 
or shear stress at 8 = Be. In our model, the swirling jet propagating along surface 6 in 
figure 1 (a, c) generates the flow in region 8 < OC. Therefore, it would be not physical 
to use the no-slip condition for stream surface 6 .  Throughout this paper, ‘cone’ 
denotes only a geometric volume of the same fluid, whose surface is fixed and 
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impenetrable. However, instead specifying the radial velocity or shear stress to be given 
at 8 = 0,, the momentum flux is used here as a control characteristic for reasons 
discussed in the next section. 

Thus, the swirling flow inside the cone is considered to be driven by circulation K 
(= vr,; v is the kinematic viscosity) given at 8 = 8, and axial flow force J( = 2npu24; 
p is the density) through cross-section S,  

J = (pv, v, +pn, - T Z n )  dS, s 
which includes contributions from the momentum flux, pressure p ,  and viscous stresses. 
In the model, the only source of axial momentum is at the cone apex, so that J is a flow 
invariant independent of the shape of S and its location. 

If one considers a rigid conical wall and a jet propagating from the apex, such a flow 
is not described by a similarity solution. Schneider, Zauner & Bohm (1987, also see 
references therein) studied in detail a swirl-free jet emerging from a hole in a plane wall 
and showed that there is no similarity. The physical reason is simple: the similarity 
corresponds to conservation of J but there is a loss of J at the wall. Nevertheless, the 
similarity can develop in the limiting case as J1+ 00 (Schneider 1985). The asymptotic 
analysis of this paper ($3) shows that the character (slip or no-slip) of the boundary 
condition at 8 = 8, does not influence the result except for flow inside a near-surface 
shear layer. Therefore, the similarity and no-slip can also be compatible in the limiting 
case as I', --f 00. (Note that Y can be interpreted as constant eddy viscosity of turbulent 
flows (Long 1961 ; Serrin 1972). Then 0 = 8, may be considered as a rigid wall but with 
the no-slip condition omitted (Burggraf & Foster 1977; SH). For this reason, the 
'inviscid' (slip) condition is used even in the direct numerical simulations of the 
Navier-Stokes equations to model vortex breakdown in pipes (Beran & Culick 1992; 
Lopez 1994).) For these reasons, the similarity approach with the slip condition is a 
useful preliminary stage for more complicated models. 

By this idealization we reduce requirements on conditions controlling the external 
flows of the vortex devices to two parameters, r, and 4, which characterize the 
intensities of swirl and blowing respectively. In spite of this strong idealization, the 
model retains the key elements leading to jump transitions in the devices. This is not 
particularly surprising because both the outer circulation and the flow force are 
quantities that are nearly conserved when vortex breakdown or other jumps occur 
away from rigid walls. This conservation is our main reason for using here the integral 
quantity J1 instead of such local characteristics as the radial velocity or stress at 

I .3. Flow force as a control parameter 
The flow force J is a traditional characteristic of jet-like flows based on the 
conservation of axial momentum flux. For swirl-free round jets, J has been used by 
Schlichting (1933) under the boundary layer approximation, by Landau (1944) for the 
exact solution of a jet issuing from a point source of momentum in infinite space, and 
by Squire (1952) for a jet issuing normal to a plane. The conservation of J results in 
the fact that these solutions of the boundary layer and the Navier-Stokes equations 
have conical similarity. That is, the velocity is inversely proportional to distance r from 
the origin of the jet; such similarity is observed experimentally in turbulent jets (e.g. 
Hasan & Hussain 1982). A constant value of the outer circulation for swirling jets also 
agrees with the conical similarity. For rotationally symmetric flows, the use of the 
conical similarity results in the reduction of the Navier-Stokes equations to a system 

e = 8,. 
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of ordinary differential equations (ODE) which considerably simplifies the analysis and 
permits a detailed parametric investigation. The similarity flows with K and J as 
control parameters were studied by Long (1961) in the boundary-layer approximation 
for a near-axis jet with a strong swirl and by Goldshtik (1979) for a few specific 
solutions of the Navier-Stokes equations with small r,. 

Long (1961) introduced M = J / ( p K 2 )  as the only asymptotic characteristic of the 
flow as r, -+ co and found a striking feature : two solutions which exist for M > M,,  
merge and disappear at M = M,, = 3.65, and no solution exists for M < M*,. 
Burggraf & Foster (1977) related this feature (i.e. fold) to vortex breakdown and found 
the more precise value of M , ,  = 3.75. Because Long’s problem is a simple but pithy 
model of a strong vortex, its different aspects have been studied in a number of 
subsequent papers (Morton 1969; Foster & Duck 1982; Foster & Smith 1989; 
Fernandez de la Mora, Fernandez Feria & Barrero 1991 ; Foster & Jacqmin 1992; 
Khorami & Triveli 1994). Note that a study of the same conically similar 
Navier-Stokes equation solutions does not show any fold and non-uniqueness when 
different control parameters are used (Yih et al. 1982; Goldshtik & Shtern 1990). The 
fold has also been found for Serrin’s vortex (Goldshtik & Shtern 1990) and in two more 
problems related to vortex breakdown in inviscid (Saffman 1992) and viscous (Beran 
& Culick 1992; Lopez 1994) flows. However, Long’s approach seems to be the most 
appropriate for swirling jets because J and K are conserved during jump transitions. 
The conservation of J and K is also a key element of the inviscid theory of vortex 
breakdown by Squire (1956), Benjamin (1962), and Keller (1994, see also references 
therein). Although in viscous fluid a loss of J and K does take place at rigid boundaries, 
this loss can be neglected for such an abrupt phenomenon as vortex breakdown. The 
reason is that the loss occurs inside viscous boundary layers on the remote walls and, 
therefore, cannot strongly influence the flow region where vortex breakdown occurs. 
Thus, a generalization of Long’s approach to a wider class of the NSE solutions in 
conical regions seems reasonable and useful; this is another motivation of our paper. 

1.4. Limitations of Long’s model 
A serious limitation of Long’s (1961) results is the non-existence of solutions for M < 
M,,, although solutions of the Navier-Stokes equations do exist in this range of M .  
This limitation originates from the consideration of the near-axis boundary layer only. 
To understand what flows occur for M < M,,  and to reveal the hysteretic nature of 
vortex breakdown, one needs to look for solutions with different flow patterns. For this 
a wider flow region and the full Navier-Stokes equations must be considered. SH’s 
generalization of Long’s problem considers the swirling flow above an impermeable 
plane, z = 0, treating the flow as a model tornado. SH found that an additional fold 
exists involving vortex consolidation, and there are at least three solutions for the same 
I‘, and J1 in some region of the parameters. For some values of rc and 4, the flow can 
be descending with a near-surface jet or two-cellular with a jet fanning out along a 
conical surface 6, = 0, < 90”. These flow patterns are outside the scope of Long’s 
approach. Drazin, Banks & Zaturska (1 995) also consider the generalization of Long’s 
vortex for the half-space but with a given (non-zero) normal velocity at z = 0, in 
contrast to the impermeability condition used by SH. 

This paper considers the entire range of the conical surface angle, 0 < BC < 180”, 
while SH considered only 0, = 90”. Such a generalization, which may superficially 
appear to be simple, not only covers a very wide range of flows but also reveals striking 
new features: multi-stability, jump flow separation from and attachment to the cone 
surface, and a swirling jet with an ‘anti-rocket’ thrust. The term ‘anti-rocket’ is used 
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FIGURE 2. Schematic of the problem: a typical streamline (helical curve) and profiles of the radial 
and swirl velocities for an ascending swirling jet. 

to indicate that the jet produces a thrust in the direction of the jet flow, in contrast to 
the typical oppositely directed thrust in rockets. Figure 2 shows a three-dimensional 
schematic of the consolidated swirling jet with the anti-rocket thrust. It shows a typical 
streamline, velocity profiles and spherical coordinates. 

Although particular flow features crucially depend on O,, there are several common 
features : more folds and solution branches corresponding to flow patterns distinct 
from the near-axis jet exist. One can view the flow as a superposition of swirl and 
meridional motion. Figure 3 shows, for clarity, only the meridional motion of three 
different flow patterns observed in this problem : (a) a consolidated upward swirling jet; 
(b) a two-cell structure with an ascending flow in region 1, a downward near-axis 
stream in region 2, and an annular jet fanning out near conical surface 8 = 8, which 
separates the two cells; and (c) a flow exactly opposite to (a). Note that Long's 
boundary-layer approach addresses only the near-axis region of flow pattern (a). 
Moreover, even in this particular case, the contribution to J1 from the outer region of 
the boundary layer is of a higher order of magnitude than that of the near-axis jet when 
re+ 00. An exception is the particular case, Oc = go", studied by SH, where the two 
contributions are of the same order of magnitude. It will be shown here that the 
contribution to J1 from the outer region can be crucial for vortex devices where the 
paradoxical anti-rocket thrust occurs. This paper's goal is to overcome the above 
limitation of Long's approach and to explain hysteretic transitions related to vortex 
breakdown and consolidation. 

1.5. Hysteresis loops 
Figure 3 ( d )  shows a schematic of the hysteresis loops in our problem. J is a (given) 
control parameter (e.g. the flow force), and V is a parameter found from the solution 
(say, a characteristic velocity). The upper, middle, and lower branches of the curve in 
figure 3(d)  are shown by the solid lines and correspond to patterns (a), (b), and (c) in 
figure 3, respectively. The dashed branches in figure 3 ( d )  denote regimes which 
presumably cannot be observed in experiments owing to their instability. Arrows 
indicate unavoidable jump transitions between the regimes : vortex breakdown (B), 
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Region 2 

Region 1 

B 
I' 

r i  J 

FIGURE 3. Typical patterns (a-c) of the meridional flow, and schematic ( d )  of hysteretic transitions 
between regimes with patterns (u-c) related to vortex breakdown (B), consolidation (C), flow 
separation from the cone (S), and attachment (A). 

vortex consolidation (C), abrupt attachment of the jet to the 6, = 0, conical surface (A), 
and abrupt separation of the swirling flow from the surface (S). These jumps between 
steady solutions are related to some (presumably unsteady) transition processes which 
cannot be described by conical similarity solutions and are not considered here as we 
focus on steady solutions only in this paper. Inside the regions with non-unique 
solutions, transitions can be triggered by finite-amplitude disturbances. Numerical 
calculations are used to determine how the non-uniqueness and hysteresis appear as J1 
and r, increase. To understand the nature of the jumps in swirling jets for high J1 and 
I',, an asymptotic analysis scheme is developed. This analysis consists of finding 
analytical solutions of the Euler equations, and analytical or numerical solutions of the 
boundary layer equations. Note that the boundary layer scales and equations are 
different among the flow patterns (u-c) shown in figure 3. Therefore, the jumps between 
the regimes cannot be found using only one specified boundary layer problem. One 
needs to start from the full NSE and then consider the boundary layer limits for each 
viscous layer of each flow pattern in figure 3(u-c). 

Thus, the aim of this paper is (i) to reveal the nature of the jump transitions in 
swirling jets, (ii) to overcome the limitations of Long's approach and to generalize it, 
(iii) to develop an asymptotic analysis of the conically similar swirling jets, (iv) to 
model outer flows in vortex devices, and (v) to present new paradoxical features of the 
swirling flows and to explain them. 
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2. Problem formulation 
2.1. Reduction of Navier-Stokes equations to ordinary diflerential equations 

We consider steady flows of a viscous incompressible fluid possessing conical similarity 
with the representation 

] ( 1 )  
vr = - u$‘(x) /r;  vo = - v@(x)/(r  sin 6); v# = vr (x ) / ( r  sin 6); 

p = p m  +pv2q(x)/r2; Y = vr@(x); x = cos 6. 

Here ( r ,  8,$) are the spherical coordinates; r is the distance from the origin; 6 and q3 
are polar and azimuthal angles (figure 2) ;  v,, vo, v I ,  and Yare velocity components and 
the Stokes stream function; I,?, q and r are dimensionless functions (r is a circulation 
along the circle, r sin 8 = const, divided by 2nv); and the prime denotes differentiation 
with respect to x. 

Substitution of (1) into the Navier-Stokes equations, exclusion of pressure, and 
simple calculations yield and ODE system : 

(1 - -7+ /+2x@-f@2= F, ( ~ - x ~ ) J ; , ~ + ~ X F - ~ F =  r 2 ,  ( i -X2)r l l=  +r/. 
(2 a-c) 

The derivation of (2)  has an interesting history. Slezkin (1934) found for r E 0 that 
the NSE are reduced to (2a)  with F being a quadratic polynomial of x. This was then 
independently rediscovered by Landau (1944) and Squire (1952) for the construction 
of their analytical solutions. For swirling flows Goldshtik (1960) found that the use of 
an auxiliary function F defined by 

( 1  - x2) t;”’ = 2rr’ ( 3 )  
drastically eases the analysis. Goldshtik (1960) and Serrin (1972) used (2 a),  (2 c )  and 
(3) to prove the theorems for existence and non-existence of solutions in their 
problems. The use of F also eases the asymptotic analysis discussed below. Equation 
( 3 )  was integrated in Sozou (1992), and it leads to (2b)  when there is no singularity on 
the axis, x = 1. 

2.2. Boundary conditions 
Since the axis in our problem is free from flow sources, except at the origin, velocity 
must be bounded at x = 1. Then it follows from ( 1 )  that 

@ ( 1 )  = 0, r (1)  = 0. (4a, b) 
However, conditions (4) do not exclude the possibility of a logarithmic singularity in 
radial velocity (Serrin 1972). For the dimensionless radial velocity, 

u = rv,/v = -+’, 
to be bounded, one needs to add to (4)  the requirement l@’(l)l < co. This requirement 
yields that an integration constant is zero at the transformation ( 3 )  into (2b). Condition 
(4a), equation (2a) and its derivative yield conditions for F :  

F( 1 )  = 0, F’( 1 )  = 0. (5a, b) 

In our numerical calculations, we use a shooting method and integrate (2) from 
x = 1 to x = x,. To start the integration, in addition to the initial conditions (4) and (5 )  
we need some tentative values of r*( I ) ,  $‘( l), and F”( 1). The latter two cannot be found 
from (2a)  and (2b)  owing to indeterminacies of ‘O/O’ type at x = 1 .  However, the 
similar indeterminacy in (2c) can be resolved to obtain r”(1) = -;$‘(l)  r(1). Tentative 
values must be chosen to satisfy the boundary conditions at the surface, x = xc, 

@(xc> = 0, T(X,) = r,, (6a,  b) 
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which represent the impermeability of the cone boundary where circulation r, = K/v 
is given. As the problem is symmetric with respect to clockwise and counterclockwise 
swirls, and the meridional motion does not depend on the sign of T,, we will use r, 2 0 
hereafter. Besides (6),  an additional (integral) relation to find the tentative values is 
that the flow force is given. 

2.3. Theflow force 
The axial flow force acting at a spherical section, r = const and 0 < 8 d 8,, is 

J = 2nr2 I",, dx, 

where 

I7,, = n,, cos 8 - l7,, sin 8, 

I7,, = pv," + p  - 2pv av,/ar = ( p 2 / r z )  (u2 + q + 24,  

I7,, = p",v,-ppv[r-lav,/a8+ra(v,/r)/ar] = [pvz/(r2sine)] [(I -x2) u'-~@-u$], 

so that 

where the dimensionles flow force 4 and its density j are introduced. 
Pressure can be calculated with the help of the relation (Goldshtik 1981) 

= XU' - $(@+XU)/( 1 - x') = ( 2 ~ @  - xF' - ~. " ) / (  1 - x'). (8) 

Equation (8) is used to exclude pressure from (7) and rewrite the relation for j in the 
form j = j ,  +jz where 

and 

Therefore, the flow force can be represented as a sum 4 = 4, + 4, where 

j ,  = xu2 - @(u + x$)/( 1 - x%) - (@')' 

j ,  = (F+ x2u + +'/2)' = [( 1 - 2x7 t,b' + 2x$]'. 

(9) 

(10) 

J l l  = j, dx = U( 1) + (1 - 2x3 u(x,) and 4, = j, dx. (1 1) s s 
Thus, Jlz depends linearly on the boundary velocities while 4, is nonlinear contribution 
of the velocity field to the flow force. To compute 4, we integrate (2) together with 

J;, = ~((2--7+9')$'-[@(2x-@)-xF'] / ( l  -x2)>>-F', 4, = jdx,  (12) 

so that J1 = 4,.xc). Since at x = 1 ,  J ; ,  is undetermined, we use the Taylor expansion 
of @ and F i n  (12) to obtain J i J l )  = ~ F " ( 1 ) - ~ ( 1 ) ( ~ ( 1 ) - 3 ) .  

After integration, Jlz(xc), @(x,) and T(x,) must match prescribed values. Starting 
from initial guesses of $'( 1), r'( l ) ,  and F"( l ) ,  we adjust these parameter values using 
the Newton shooting algorithm. For very small r, and 4 the shooting iterations 
converge because the problem nonlinearity is weak. Once converged solutions for given 
r, and 4 are obtained, we increase r, and 4 gradually using the previous values of 
$'(l), T'(l ) ,  and P"(1) as the initial data for the shooting. The numerical calculations 
are also consistent with the asymptotic analysis when either r, or 4, or both tend to 
infinity. 

1: 
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3. Asymptotic analysis 
3.1. Reduced Euler equations 

The asymptotic analysis helps us to understand the nature of jumps, the structure of 
the swirling flows, and the contributions of different flow regions to the flow force. Our 
technique encompasses further development and generalization of those used by Paul1 
& Pillow (1985), Foster & Smith (1989) and SH. From the physical point of view, the 
parameters rc and 1Jl1112 can be considered as the Reynolds numbers characterizing the 
swirl and the meridional motion respectively. We expect the usual result: at high 
Reynolds numbers, there are wide regions of the flow field where viscous effects are 
negligible, and there are thin boundary and inner layers where viscosity cannot be 
ignored. 

In the inviscid regions one can use the Euler equations which for the conical 
similarity class reduce to an ODE system similar to (2) but with the linear terms in 
the left-hand sides of (2a)  and (2c) omitted: 

$2 = -2F, (1 -x2)F”+2xF’-2F = T 2 ,  $r‘ = 0. (1 3 a-C) 

We expect that the viscous layers correspond to jumps or other singularities of flow 
quantities in solutions of (13). The arrangement of the viscous layers and inviscid 
regions depend on r, and 4. We will show the solution non-uniqueness and folds for 
each of the flow patterns in figures 3 (a-c). It is more instructive to start from the two- 
cell flow pattern (figure 3 b). 

3.2. Two-cellJEow 
3.2.1. Inviscid regions 

It follows from (13c) that r‘ = 0 except at points where @ = 0, i.e. T(x) is a step 
function. Note that T =  const satisfies not only (13c) but also (2c). Owing to the 
different boundary conditions, T(x,) = r, =!= 0 and r ( l )  = 0, function T(x)  must jump 
at some x. In the two-cell regime, the jump occurs exactly at the separating cone, x = 
x, (at 8 = 6, in figure 3b). Physically, inside the near-surface cell in figure 3(b), the 
angular momentum is transported to x = x, from x = x, where Tis not zero. However, 
in the near-axis cell, the flow is toward x = x, from the axis where the circulation is zero 
(see figure 4a). Thus, the solution of (1 3 c) is 

and 

where subscripts 1 and 2 relate to regions 1 and 2 respectively. Then it follows from (3) 
and (14) that FT = 0 and F‘,“ = 0. However, (13b) and (14) indicate that F has a jump 
at x = x,. Therefore, F is a quadratic polynomial although it is different in regions 1 
and 2. Applying the matching conditions at x = x,: & = F,, F ;  = FL, F;  - F“ 2 -  - 
T:/( 1 - x:), the condition 4(xc) = 0 from (6) and (13 a), and (5) we have 

and 

Finally, the inviscid solutions for the stream function follow from (1 3 a), 

r = r, = r, in x, < x < x, (region l), (144  

r = rz = 0 in x, < x < 1 (region 2), (14b) 

4 = - f : ( ~ - x ~ ) [ 2 ~ ~ - ( 1  +x,)x,--(~ + ~ , - 2 ~ , ) ~ ] / [ 2 ( 1  +x,)(l - x , ) ~ ]  ( 1 5 ~ )  

F, = -r:(i -x)2(x,-xc)2/[2(1 -x:)(i -xc)2~, 

$1 = $ - s { ( ~ - x J  [2~,-(1 + X , ) X , - ( ~ + X S - ~ X , ) ~ ] / ( ~  -X~)~~’~/(X,-X,), 
@z = - *,(I- W l -  x,), 

@, = rc(x,-xc)(i - x y / [ ( i  -xc)(i +x,)1/21. 

(15b) 

( 1 6 ~ )  
(16b) 

(16c) 

where 
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I -*, 

\ 
FIGURE 4. Inviscid solutions for (a) circulation i- and (b) stream function 9; (c) structure of a two- 
cell flow (see figure 3 b also) with regions of potential flow PF and vortical inviscid flow VIF, a viscous 
annular jet AJ, and a near-surface layer SL. 

The different signs of and +, are due to the different flow directions in the cells 
(figure 3 b), and as a result, there is the jump in the stream function from @l(x, - 0) = @, 
to @&x,+O) = -9, (figure 4b). For the radial velocity we have ul(x,-O) = 
-u,(x,+O) = @J(l -xs). This means that inviscid flows collide, having the same 
absolute values but opposite signs both for u, and ve at the separating surface, x = x,. 
Swirl velocity u4 jumps to zero at x = xg, and the inviscid flow is swirl-free in region 2. 

W ,  = - V V Y - ~ ~ ,  w0 = 0, w4 = - v v ~ - ~ v ,  

we see that w, is zero in both regions, while w4 is zero in region 2 but not in region 1. 
Therefore, we have potential flow in region 2 and vortical inviscid flow in region 1. The 
question now arises: what is the physical reason for the vortical flow in region l ?  
Vorticity is advected by inviscid flow; since streamlines come from infinity where 
vorticity is zero, vorticity must be zero in the whole regon. This reasoning is indeed 
valid for region 2. However, in region 1, streamlines come from the near-surface 
boundary layer and go to the viscous annular jet: figure 4(c) shows a schematic of the 
inviscid regions and viscous layers for the two-cell pattern. These two viscous layers, 
the annular jet and near-surface boundary layer, provide the main contributions to 

As the vorticity components for conical flows are 
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the flow force in comparision to potential flow and vortical inviscid flow, and play a 
crucial role in our explanation of multi-stability (gEj3.2.5 and 3.3.2). In the two-cell 
regime, the most high-speed part of the flow is the viscous annular jet. 

3.2.2. Annular jet 

Viscosity smooths the jumps in r and 1,4 shown in figure 4. Near x = x,, the radial 
velocity, u = - $', has large positive values, i.e. there is a strong outflow. Fluid, coming 
from regions 1 and 2 (figure 3 b), forms an annular jet fanning out along the separating 
conical surface. To find a solution for $ inside this inner viscous layer, we need to 
consider (2a) and a 'blown up' view of the vicinity of x = x, by introducing an inner 
variable 5 = A(x-x,), where A is expected to be O($,). As F, defined by (15), is 
continuous at x = xs, we can replace F by F(xs) = -$$.," inside the annular jet: 

(l-x2)7y+2x$-$$2 = -&I+.,". 

By substituting x = x,+[/A and $ = -$, V,(Q, taking into account that d/dx = 
A d/d(, dividing all terms by - ;$:, specifying A = $,/[2( 1 - x:)], and allowing $s --f 00, 

we obtain dV,/d[ = 1 - V;, and thus V, = tanh 6. Therefore, 

$ = - $, tanh 6 where 6 = (x-xs) $s/[2( 1 -xi)]. (18) 

This solution corresponds to a conical annular jet with a radial velocity profile, 

U/U, = U,(Q, U2 = COSh-' [, us = ; ~ E ( x ,  - x,)' [( 1 + x,) (1 - xC)]-', (19) 
which coincides with the one for the Schlichting plane jet (Schlichting 1979). However, 
note that the dependence of the maximal velocity and jet thickness on Y is different for 
the conical and Schlichting jets, as these jets are physically different. 

Stream function (18) for the inner viscous solution is matched as l-+& co with the 
outer inviscid solutions (16 a, b) at x = x, f 0. According to (19), u - O ( r : )  within the 
jet and tends to zero as [ + + co. However, outside the jet the radial velocity is not zero 
but is only O(T,). Therefore, to match the radial velocities one needs to consider the 
next term in the asymptotic expansion, 

Then calculations yield 

V, = 2( 1 + x,) 6 tanh 6 - (  1 -xs)(tanh2 [- E2 cosh-2 Q, (21 a)  
U, = tanh[+(cosh-'Q/(l -x,)-[(1 +6') tanh[-&J(l + x , ) - l c o ~ h - ~ ~ .  (21b) 

One can see from (20), (21) and (1 6) that the radial velocity is matched at x = x, f 0. 
Also, it follows from (18)-(21) that the position, x = xma,, of the maximal radial 
velocity is shifted slightly from the separating surface, x = xs, toward the vortical 
inviscid flow: x,,, = x, - 4( 1 + x,)~ (1 - xi) (x, - x,)-' Ti'. 

3.2.3. Near-surface layer 
When x + x, in solution (16 a) for the vortical inviscid flow, the stream function goes 

to zero but the radial velocity tends to infinity. To avoid this singularity, one has to 
include viscosity in the vicinity of the surface. We expand this vicinity with the help of 
the scaling 

(22) 
and to make the convective and viscous terms of the same order of magnitude we use 

7 = 4 x  - X,), 

$ = 4 1  -xE) W(7) and 01 = [r:(x, - x,) (1 + x,) (1 + x ~ ) ] ~ ' ~ / (  1 - x;). (23) 
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FIGURE 5. (a) Matching of solutions for the near-surface layer and vortical inviscid flow (figure 4c). 
Solid curves show normalized stream function W versus inner coordinate 7. Numbers are values of 
dW/dy at 7 = 0. Dashed curves show attracting (a_) and repelling (a,) asymptotes. The curve 
corresponding to 7,. = 1.2836 matches outer solution a,. (b) Distributions of radial velocity W' and 
flow force J ,  in the surface layer. C, is the asymptote of J, = J,-$lny as y +  00. 

Inside the boundary layer, we apply 

F = F , + d ,  d=(1-X,2)@'(XC), (24) 

to correct 1;1 (see (15 a)) near x = x,. We expect that d is of a smaller order of magnitude 
than 4 as T,+ 00, and therefore one can neglect d where 4 =+ 0. However, one needs 
to take d into account near x = x, because 4(x,) = 0. 

Using (22)-(24) in ( 2 4  and allowing a+ 00 yields 

dW/dq = fWz-7+qc, 7, = @'(~,)/[a~(l-~x,2)]. (25) 

We expect qc to be a finite non-zero number yet to be determined. Equation (25) is 
integrated numerically from 7 = 0 with the initial condition W(0) = 0. Figure 5(a)  
shows a few solutions W(7) for different 7, (see values labelling the curves). If qc < qc*, 
then W(7) approaches the asymptote W = - (27)1'2 (curve a- in figure 5a) as 7 + 00. If 
yC > ye*, then W(7) goes to infinity for finite 7 = qp  as 2/(yp-q). If qe = ?I,., then W(q) 
approaches the asymptote W = (27)ll2 (curve, a, in figure 5a) as 7 +  00. To match the 
outer solution (16a) one needs the value qc = T,., and the shooting procedure gives 
q,. = 1.2836. 

From (23)-(25) it follows that d = vca2(1 - ~ f ) ~  is of O ( r 3 ) .  Therefore d is indeed 
of a smaller order of magnitude (for large r,) than 4 which is of O(T:). Note that the 
solution of (25) for the near-surface boundary layer matches solution (16a) for vortical 
inviscid flow with respect to both the stream function and radial velocity. Here one 
does not need the next term of the asymptotic expansion to match u. 

Finally, the asymptotic relation for the Reynolds number Re, = PV,, /V,  where u,, is 
the radial velocity on the cone surface, is 

Re, = - 1 .28r:/3(x, - x~)'/~[( 1 + x,) (1 + x,)]~/~/( 1 - x:). (26) 

The minus sign in (26) is because the radial component of velocity is directed toward 
the apex at the cone surface (see figure 4c). 

Now, having the solutions for the whole flow region, we can calculate the flow force. 
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3.2.4. Decomposition of the $ow force 
The flow force can be decomposed into the sum 

4 = JPF + JAJ + Jv iF  + JsL, (27) 
where the terms on the right-hand side of (27) are contributions from the corresponding 
regions, defined in figure 4(c). Applying (16b) in (9) and integratingj, from x, to 1 we 
find the contribution of the potential flow (PF): 

It follows from (16c) that JPF is of O(r:). 
To estimate the flow force of the annular jet (AJ) we note that the main contribution 

is due to term xu2 in (9) that is of O(r:),  as follows from (19). Then JAJ - xu26x, where 
6x is O(r;') (see (18), (16c)). This implies that JAJ - O(r:). More detailed calculations 
using (18b(21) and (9) indicate that there is no contribution of O(T:) to J1 and 

JPF = (1 - xJ2 1c.i In [2/( 1 + x,)]. (28) 

JAJ = !x~ @i/(l -xi) + O(r,.). (29) 
To find the contribution from the vortical inviscid flow, JVIF, we substitute (16a) in (9) 
and decompose j ,  in two parts: j ,  = j,,+j,,, where j,, is a 'regular' part that gives 
5,. - O(F:). The analytical expression for Jv, is rather lengthy; since this term is 
not crucial for the total flow force, we omit it. The singular part is 

If one tries to integrate (30) from x, to x,, the integral diverges owing to the pole ofj,, 
at x = x,. To overcome this difficulty we integrate (30) from x, = x,+a-li2 to x,, 
where a is defined by (23), which gives 

To find a contribution from interval (x,, x,) to the flow force we use the near-surface 
boundary-layer solution (SL). Substituting the inner variables (22) and (23) in (9) we 
find that, to the leading order, 

As 7 + 00, (d W/dy)a -+ 1/(27) because W+ ( 2 ~ ) " ~ .  Therefore if one integrates (32) 
from 7 = 0 to 7 = 00, the integral diverges logarithmically. However to cover interval 
(x,,x,) we need to integrate (32) only up to 7, = all2, which gives 

To find c b ,  (32) is integrated together with (25). Figure 5(b)  shows the calculated 
distributions of 

j,, = C/(X-X,), c = E ~ c ~ ~ , - ~ c ~ / K ~  --xC)(1 +x,)l. (30) 

Jv, = c[ln(x,-x,)+~Ina]. (3 1) 

j ,  = x,( 1 - x:)~ a4(d W/dy)2. (32) 

JL = ~,(l-x,2)~a~(C,++lna),  C, = 1.21). (33) 

Pn 

W' = dW/dy, J ,  = '(dW/d71)2d71 and Jb  = J,-$lnT J, 
( J b  is defined in the range 1 < 7 < a). In contrast to J,, Jb is bounded; figure 5 (b) shows 
how Jb  approaches its limit C, as 7 +  co. Combining (31) and (33) and substituting a 
from (23) we find that the contribution of the near-surface layer to J1 is 

(34) JsL = x,(x, - x,) [3( 1 - x,) ( 1 + x,)]-l r: In r, + O(r:).  

At x, = - 1, (34) is reduced to JsL = (- 1 /6) T: In r, which coincides with the result of 
Paul1 & Pillow (1985) for a flow induced by a half-line vortex. 

Thus we see for the terms in (27) that J A J  - O(rz),  JsL - O(r:lnr,), and the 
contribution from the inviscid regions is of O(r:),  i.e. the annular jet provides the main 
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FIGURE 6. (a) One-cell flow with potential flow PF and near-surface boundary layer SL. (b) 
Distributions of stream function W, circulation y, and flow force J, in the SL shown in (a). 

contribution to the flow force as Tc+ co. Therefore, to calculate the flow force of the 
two-cell flow at high r,, we need to take into account only JAJ. This is enough to reveal 
non-uniqueness of solutions. 

3.2.5. Non-uniqueness of two-cell regimes 
Using (16c) in (29) we obtain at leading order 

~ 1 =  ;r~x,(x,-xc)3(1 - x , ) y i  +x,)-5/2(1 -x,)-3. (35) 

It follows from (35) that for any fixed r, and xc, J1 is a non-monotonic function of x, 
with zeros at x, = 0, x, = 1 and x, = x,. (It will be shown below that this means that 
J1 has a smaller order of magnitude than r:). For 0 < x, < 1, J1 > 0 and, therefore, 
there is a maximum of J1(= Amas) inside the interval x, < x, < 1. This implies that for 
each value of J1 in the range 0 < J1 < J1,,,, there are at least two values of x,, i.e. two 
different two-cell regimes ! 

If x, < 0, then J1 < 0 for x, < x, < 0. Since J1 = 0 at x, = 0 and x, = x,, there is also 
a minimum of A(= Amin) inside the interval x, < x, < 0. This means that for each 
value of J1 in the range Amin < J1 < 0, there are at least two values of x,. So there are 
two different two-cell regimes for both positive and negative values of J1. Each 
extremum of J1 means that surface V =j(J1, r,) - where V is any parameter resulting 
from the solution - has a fold (similar to those in figure 3(d) that can be interpreted 
as a section of V(J1, T,), e.g. when T, = const). It follows from the above analysis that 
there are two folds when x, < 0 and one fold when x, 3 0. The fold corresponding to 
J1,,, relates to a jump like C in figure 3 (d ) ,  and the fold corresponding to J m i n  relates 
to a jump like A in figure 3(d) .  

Thus, the asymptotic analysis reveals solution non-uniqueness for large r, and J1. 
We have found that there are at least two solutions. To show that the number of 
solutions and number of folds are more than two, we have to consider regimes with a 
one-cell inviscid region. We start with the simpler case when the flow in the inviscid 
region is potential. 

3 . 3 .  Regime with near-surface outflow 
The results of 5 3.2 do not cover the cases when x,  = x, or x, + x, as r, + co because 

(16a) would then yield @, = 0. Therefore, the regime, schematically shown in figure 
6(a), must be studied separately. In contrast to the two-cell case (figure 4c), now there 



16 V. Shtern and F. Hussain 

is no vortical inviscid flow region in figure 6(a). However, potential flow and near- 
surface boundary layers occur in both the cases. 

3.3.1.  PotentialJEow 
The solution for potential flow is similar to that in $3.2.1 : 

T =  0, $z  = -$s(l -x)/(l -xc) in x, < x < 1, (36) 

(37) 
and 

however, here parameter $s is not defined by (16c) but must be found from matching 
conditions for the potential flow and near-surface boundary layer. 

3.3.2. Near-surface jet 
The shear-layer problem for the near-surface jet is different from that in 83.2.3. 

because now r is not constant across the surface layer but varies from r, at x = x, to 
zero at the outer boundary of the surface layer as follows from (36). This produces 
different inner scales and boundary-layer equations. Introducing the inner variables 

JPF = y?.,”( 1 - xJ2 In [2/( 1 + x,)] ; 

(38) 
II. = 4 1  -4) W(r), F = a2(1 -x:Y @(r), r = r,Ar),\ 
‘I = OI(X-X,),  a = C’yl -x,2)-3/4, J 

substituting them in (2), and allowing r,+ co, we get 

W’ = W2/2+@, y” = Wy’, CP” = y2. (39) 

Here the prime denotes differentiation with respect to 7. The boundary conditions at 
the surface are transformed from (6) to W(0) = 0 and y(0) = 1 .  To match with (36), 
one needs to satisfy the conditions, y + 0 and @’ --f 0 as 7 + co. For this, y’(0) and @‘(O) 
must be found (e.g. by the shooting procedure). W‘(0) = @(O) is a free parameter, 
which is related to Re, = Y V , ( X , ) / U  = -r,(l -~,“)-‘/~@(0). 

To find a contribution from the near-surface layer to the flow force we use (32) and 
substitute a from (38), which yields 

j ,  = x, rz( 1 - x,“)-’ W 2 ,  (40) 

and after integration of (40) we have 

JsL = X ,  I‘;‘’( 1 - x:)-~’~ J m, J, = J: W2dy.  (41) 

One more matching condition is that the value of the stream function from the inviscid 
solution (36) at x = x, must coincide with that from the boundary-layer solution of 
(39) at 7 = coy which gives 

$hS = - Iy( 1 - x y 4  W( 03). (42) 
Substitution of (42) in (37) yields that 

JPF = TC(l W 2  ( ) ln [2/(1 +xc>l. 

Therefore, JPF is of O(r,) while, as follows from (41), .IsL is of O(T;I2) (except in the case 
x, = 0 studied in SH where JsL is of O(T,)). 

Since the potential flow is directed to the cone (figure 3 c), $ is negative and t,bs > 0 
from (36). It follows from (42) that W(co) must be negative. Let us conjecture that 
W(co) is a non-zero finite number. Then one can see from (39) that y and CP‘ decay 
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w’(0) 
- 64 
- 40 
- 20 
- 10 
-3.5 
-1  
-0.116 

0 
1 
2.5 

- W”(0) -y’(O) 

0.0683 5.66 
0.0864 4.47 
0.122 3.16 
0.173 2.24 
0.290 1.33 
0.508 0.754 
0.789 0.469 
0.848 0.43 
1.56 0.159 
3.25 0.027 

J 

40.1 
23.6 
11.8 
5.93 
2.12 
1.27 
0.498 
0.507 
1.94 

36.3 

- Wtm) %,, 
11.3 0 
8.95 0 
6.32 0 
4.48 0 
2.67 0 
2.06 0 
1.13 0 
1.09 0 
1.17 2.17 
2.45 3.69 

Comments 
Transition to the SL with 
weak swirl 

- 

- 

- 
- 

Minimal flow force J 
Flow separation 

Transition to two-cell 
- 

regime 
TABLE 1. Characteristics of the near-surface layer (SL) 

exponentially as y + co. Then W’ also decays exponentially and thus W and @ tend 
exponentially to negative constant values. Therefore, the above conjecture is correct. 
Since W’ decays exponentially, the integral in (41) converges. 

The flow pattern inside the near-surface layer can be one-cellular or two-cellular 
depending on @(O).  Table 1 shows the dependence of the main characteristics of the 
near-surface boundary layer on @ ( O ) (  = W‘(0)). In particular, one can see that J, has 
the minimum value J, = Jmmin = 0.4984 at @(O) = -0.116, i.e. 

J ~ ~ ,  e5t = 0 . 4 9 8 4 ~ ~  r : / 2 ( i  - x:)-1/4. (43) 
Subscript ext means an ‘extremum’ that is a minimum for x, 2 0 and a maximum for 
x, < 0. The minimum is reached in the one-cell flow. Figure 6(b) shows distributions 
of stream function W, swirl y, and the flow force 4 at J, = Jmmin. For positive W ( O ) ,  
when the near-surface boundary layer becomes two-cellular, the value ysep  (where 
W = 0) is shown in the last column. There is the tendency for J, -+ 00 as rsep+ co, 
which means transition from (41) to (34). 

Since there is also the tendency for J, + co as W’(0) + - co (table l), this means that 
(41) changes in this limiting case as well. To find the new asymptotic relation, we note 
that the meridional motion dominates the swirl as W’(0) + - 00. Therefore, we can 
neglect the swirl when considering the meridional motion. Then, introducing the inner 
variables 

using F = - $32, and allowing $, -+ 00, we get from (2a) 
$ = - $, Wy), r = a(x - x,), a = +$,( 1 - x:), (44) 

W’ = 1 - W’, W =  tanhr, (45) 
where the condition W(0) = 0 gives the integration constant. Applying (44) in (2c) and 
allowing $, -+ 00 we get T” = - 2Wr’; substituting (45) in this equation and integrating 
with the conditions r(0) = r, and r(00) = 0, we obtain 

r = r,( 1 - tanh y). (46) 

(47) 

Then matching the boundary-layer and potential solutions with respect to F‘ yields 

= $:/[(4 In 2 - 2) (1 - x,)]. 
Applying Re, = - v ( x , ) ,  it follows from (51) and (52) that Re, = $.,2/[2(1 -x:)], and 
therefore 

r: = 2Re:(l -x:)(1 +xC)’/(2ln2- I)’. (48) 
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To find a contribution of the near-surface layer in the flow force we use (44) and (45) 
in j ,  = X,@'(X)~ and after integration obtain 

JsL = x,  T:(4 In 2 - 2) / (3  + 3x3.  

Js. = (23'2/3) Re:'' x,( 1 - x : ) " ~ ,  

(49) 

(50) 

which is also valid for the non-swirling near-surface jet. 
Thus, there is one more extremum (i.e. fold) of J1 in the one-cell regime with the near- 

surface outflow (see (43)).  For the case x ,  -= 0, this fold corresponds to the maximum 
of J1 and relates to transition S in figure 3 ( d ) .  This transition occurs at a negative value 
of 4 - O ( r : / 2 )  and indicates a jump separation of the swirling flow from the surface, 
i.e. abrupt transition of the flow pattern from (c) to (b) in figure 3 .  If, after this 
transition, one decreases 4 down to its negative minimum Jlmin - O(T:) (see §3.2.5), 
then a transition of type A in figure 3 (d)  occurs. This indicates an abrupt attachment 
to the surface of the swirling outflow, i.e. an abrupt transition of the flow pattern from 
(b)  to (c )  in figure 3 .  Finally, we will show that one more fold exists for the one-cell 
flow with the near-axis jet (figure 3a) .  

Substitution of r, from (48) in (49) gives the relation 

3.4. Outer flow of the near-axis je t  
The results of $3.2 do not cover the case when x,  = 1 or x8+ 1 as r,+ co because I), 

becomes zero in (16c). Therefore, this regime, whose schematic is shown in figure 7(a)  
(see also figure 3a), must be studied separately. In contrast to the two-cell case (figure 
4c) ,  now there is no potential flow region, and the viscous annular jet is transformed 
to a near-axis Long's jet; the near-surface boundary layer and vortical inviscid flow are 
common. 

3.4.1. Near-surface boundary layer 

after putting x ,  = 1 .  In particular, the analysis of 53.2.3 is valid with 
Results for the near-surface boundary layer follow from those for the two-cell case 

a = 21/3rE/3( 1 - x:)-~/~, Re, = - 2.03 T:I3( 1 - x;)-li3. (51) 

3.4.2. Vortical inviscid region 

Since (1 6 c) yields @, = 0 at x, = 1, the inviscid analysis must be reconsidered. Now 
r = r, in x, < x c 1, and to find the stream function distribution we first substitute 
(16c) in (16a),  eliminate (1 -x,)ll2, and then put x ,  = 1 to obtain 

= TJ(X - x,) (1 - x)/( 1 - x,)]? (52) 

( 5 3 )  

Substituting (52) in (9) we get after simple but lengthy calculations that 

j ,  = :~[x,(x - xJ' - (1 + 3 ~ , )  (1 - x,)-' ( 1  + x)-']. 

We see that j ,  has a pole at x = x, like in the case studied in 53.2.4. However, there is 
no pole at x = 1 even though 1c.' has a square-root singularity at x = 1 according to 
(52). The corresponding 'pole' terms appear to cancel in the calculations. 

To overcome the difficulty induced by the pole at x = x ,  in (52), we apply the same 
technique as in 53.2.4 and integrate ( 5 3 )  from x, = x,+a- l i2  to 1 ,  where a is defined 
by (51), which gives 

JVIF = $r;($x, In a + x, In (1 - x,) - (1 + 3x,) (1 - xJ1 In [2 / (  1 + x,)]). (54) 

A contribution from interval (x, ,x,)  to J1 will be found by considering SL. 
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FIGURE 7. (a) One-cell flow with vortical inviscid flow VIF, near-surface layer SL, and Long’s jet LJ. 
(b, c)  Numerical (solid curve) and asymptotic (dashed curves) results for the dependence of the 
maximal radial velocity u, (b)  and velocity on the axis u, (c) on the normalized flow force M in Long’s 
jet. 

3.4.3. External flow force 

given by (51). Adding (33) to (54) and substituting a from (51) we obtain 
Reiterating the procedure used in $3.2.4 for the SL we arrive at (33) but with a now 

JVIF + JEL = JEX = (x , /6)  re2 In r c  + F:f , (x ,> ,  
1+3x, 2 

fe(xC) = x, 2Cb + $ In ;:!i;:;+= In-. 1 + x ,  1 [ (55) 

Here JEx is the contribution to J1 from the vortical inviscid flow and near-surface 
boundary layers, i.e. from the whole region which is external with respect to the Long’s 
jet. There are three reasons to elaborate on expression (55) ,  where the term of O ( r @  
is not neglected in contrast with the case of the two-cell flow. The first reason is that 
if x ,  = 0, then the term of O(T:lnT,) on the right-hand side of (55) becomes zero. In 
this case, (55)  yields JEX = -aT,2 In 2 which coincides with the result obtained in SH for 
a model tornado. Secondly, as In T, grows very slowly as T, increases, both the terms 
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in (55) can be used for comparison with numerical results at moderate values of r,. 
And, finally, the third reason is that JLJ (that is the contribution of Long’s jet to 4) is 
also of O(Q (Long 1961). Therefore, one needs both the terms in (55) for detailed 
estimation of JEx and JLJ. 

It follows from (55) that JEx is constant for fixed r, and x,. However, J1 is not 
constant owing to JLJ. To compare JLJ and JEx we now reconsider the analysis of the 
near-axis flow after Long (1961), Burggraf & Foster (1977), and Foster & Smith (1989). 
We study in more detail two points: (i) transformation of Long’s jet into the 
Schlichting round jet (Schlichting 1933) when swirl becomes weak in comparison with 
the meridional motion, and (ii) matching of Long’s jet and vortical inviscid flow. 

3.5. Near-axis jet 
3.5.1. Schlichting’s jet 

We start with the case of the swirl-free round jet to deduce an improved relation for 
the flow force. Swirl-free conical flows are governed by Slezkin’s (1934) equation that, 
under conditions (4) and (5), takes the form 

(56) ( 1  - 2) II.’ + 2x11. - i I I .2  = C( 1 - x ) 2 ,  

where C = -Re,( 1 + x,)/( 1 - xc). Let Re, be bounded but Re, = - $‘( 1 )  + co . 
Introducing the inner variable, 7 = Re,(l -x), and considering the expansion with 
respect to Re;’, we obtain 

where $o corresponds to Schlichting’s solution. 
It follows from (56) and (57) that d$/dx+2 as q+m. On the other hand, the 

solution for the outer flow near x = 1 has the form, $ = 4-2(1 -x)+ o(1 -x) 
(Goldshtik & Shtern 1990). Therefore, the inner and outer solutions are matched with 
respect to v, due to the second term of expansion (57). The flow force is found by use 
of (57) in (9) which gives 

Thus, the flow force of the swirl-free jet is less than that due to the main term only. 

J1 = $Re,-41nReu+0(1). (58) 

3.5.2. Long’s jet 
Using = Re,(l - x) in (2) and allowing Re, -+ 00 we obtain the system 

where the prime denotes differentiation with respect to 7. Solutions of (59) must satisfy 
the boundary conditions on the axis, 

$(O) = 0, @’(O) = 1, y(0) = 0, F(0) = F’(0) = 0, (60) 

y(co) = 1, F‘(co) = -%. (61) 

and on the outer boundary of the LJ, 

Here e-’ = uL = Re,/r: is the rescaled velocity on the axis and y = T‘/rc. Long’s 
problem is equivalent to (59)-(61), but formulation (59)-(61) seems to be easier for 
numerical calculations and analysis. In particular, one does not need the Taylor 
expansion for integration from 7 = 0 as used by Long (1961). For the integration, 
tentative values must be chosen for y’(O), F”(O) ,  and uL. One cannot find F”(0) from 
(59) owing to the ‘ 0/0 ’-type indeterminacy, but the indeterminacy solution yields 
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y”(0) = -fy’(O). After integration, (61) must be satisfied, and a prescribed value of the 
flow force must be matched with the computed value. These three requirements yield 
the values of y’(O), F”(O), and uL with the help of the Newton shooting procedure. We 
use this algorithm to recalculate Long’s solution over a wide range of Long’s parameter 
M = 2nJ,/TE. Solid curve 1 in figure 7(b) shows the calculated dependence on M of 
u, where u, = u,/I‘: is the.rescaled maximal velocity of Long’s jet. 

3.5.3. Matching of Long’s and Schlichting’s jets 
Our goal here is to study in more detail the limiting cases as M+ 00 along the upper 

and lower branches of curve 1 in figure 7 (b). Above the cross on curve 1, the maximum 
of the radial velocity is positioned on the axis, i.e. u, coincides with uL. Since along the 
upper branch uL + co, we can use an expansion in e : 

$ = $ o + e $ l +  ..., y = y o + c y l +  ..., F = l $ + e E ; +  .... 
At the zeroth order, $,, is again Schlichting’s solution, 4 3 0, and yo = 7 / (4+y)  
(Foster & Smith 1989; Goldshtik & Shtern 1990). At the first order, 4 = 21n 
(1 + +r,~) - f ~ ,  there is no analytical solution for = $7 -In 7 + O( 1) for 7 >> 1. 
It yields d$/dx = - r: d$Jdy --f -ic as 7 + co. This again exactly matches the axial 
velocity of the outer solution for highly swirling flow (Goldshtik, Shtern & Yavorsky 
1989). Straightforward calculations then give 

but 

J ,  = 4Re,/3 - (+r,Z + 4) In Re,. 

For the case, r, + 1, i.e. for Long’s boundary layer, one can omit the 4 in the brackets. 
Multiplying by 27c/rE and adding one more term we transform (62) to 

M = 8xu,/3 -in In u, - 2.25, 

shown by dashed curve 2’ in figure 7(b). The relation M = 8xu,/3 is also shown by 
line 2. Merging of the solid and dashed curves means agreement of our numerical and 
asymptotic results. 

3.5.4. Matching of Long’s jet with the outer f low 

Along the lower branch of curve 1 in figure 7(b) as M +  co, Long’s jet is transformed 
into the viscous annular jet. The value of the maximal velocity in viscous annular jet 
is governed by relation (19b) which is reduced at x, = 1 to 

(63) 

In particular, (63) means that the maximal jet velocity does not depend on x, in the 
limiting case x, + 1. In figure 7 (b), dashed line 3 showing (63) merges with curve 1 as 
M +  00, and therefore the maximum velocities of Long’s jet and the viscous annular jet 
coincide. 

Now, we consider matching of the axial velocity for Long’s jet and the potential flow 
as x, + 1. Solid curve 1 in figure 7(c) shows the numerical results of the relation 
between uL and M. In contrast to u,,uL varies non-monotonically along the lower 
branch of curve 1 (compare figures 7 b  and 7c). Our calculations show that the axial 
velocity reaches its minimum uLmZla (= -0.0712) at M = 5.77 and then tends to zero as 
M increases. The minimum of uL is reached with a two-cell flow pattern, but the near- 
axis cell is thin and positioned inside Long’s boundary layer. For cone x = xs, 
separating the cells, we find cl = 1.08 where 

u, = 1 
8‘ 

t1 = arc[( 1 - x,)/( 1 + x,)]1’2 
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For the potential flow it follows from (16b, c) that 

Re, = - $'( 1) = - r,(x, - x,)/[( 1 - x,) (1 - ~ 3 ~ " ] ,  (65) 

and therefore Re,+- co as x,+ 1. However, this just means that Re, becomes of a 
higher order of magnitude with respect to r,. Indeed, substituting (1 -xs) from (64) in 
(65) and then putting x, = 1 gives 

U L  = - 1/(8&-1). (66) 

Although (66) provides the correct order of magnitude for uL at f [ ,  N O( l), nevertheless 
again uL + - co as 6, + 0. To overcome this drawback we use relations (18)-(21) for 
x = 1 which yields to the leading order 

U L  = - tanh (f[1)/(8&-1). (67) 
Since tanh(.&)/tl < 1 ,  it follows that uL 2 -$ and reaches its minimum uL = -+ at 
f [ ,  = 0. Thus, the drawback of (66) is overcome in (67). 

Substituting (1 - x,) from (64) in (35) and then putting x, = 1 gives Jl = tr: 5, or 

El = :M/7b (68) 

which agrees with the corresponding result by Foster & Smith (1989). Use of (68) in 
(66) yields the relation, uL = - n/(6M), shown by dashed curve 2 in figure 7 (c). Dashed 
curve 3 in figure 7(c) shows the result of substitution of (68) in (67). 

Thus, the new results of this section are the existence of the minimal axial velocity, 
uLmin, and the asymptotic relations for Long's jet as 1W-t co that match it with the 
outer flow. Besides the extrema of Jl found for patterns (b) and (c) in figure 3, there is 
the minimum of Jl for pattern (a); however, the Long (1961) and Burggraf & Foster 
(1977) results for the minimum value, J l m i n  = M*LF3(27c), must be modified to 

Jlmin = M*L r : / ( 2 ~ )  -I- JEx, (69) 
where M,, = 3.742 is the minimum value of M in Long's problem and JEx is the 
contribution of the external flow given by (55). 

3.6. Summary of the asymptotic analysis 
Since the above analysis is rather lengthy, the main asymptotic results will be 
summarized here. When both flow force J1 and circulation r, are high enough there are 
four or five solution branches depending on the cone angle 8,. 

Cone with 8, < 90" 
(i) The flow force Jl is positive and has two minima and one maximum at a fixed 

value of r,. 
(ii) One of the minima, Jl = Jminl is of O(rElnI',) (see ( 5 9 ,  (69)) and occurs in the 

one-cell regime with the near-axis outflow (Long's jet). This fold relates to 
vortex breakdown (arrow B in figure 3 4 .  

(iii) The maximum J1 = J,,, is of O(r:) (see (35)) and occurs in the two-cell regime 
with the inner annular outflow (the annular jet). This fold relates to vortex 
consolidation (arrow C in figure 3 4 .  

(iv) The other minimum Jl = JminZ is of O(r;/ ')  (see (43)) and occurs in the one-cell 
regime with the near-surface outflow. 

Cone with 8, > 90" 
(i) At a fixed value of r,, J1 has two minima and two maxima. 
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(ii) The same as conclusion (ii) for 0, < 90" but now JrntG1 is negative. 
(iii) For the first maximum 4 = JmaZ1 is positive see conclusion (iii) for 8, < 90". 
(iv) The second minimum J1 = Jmi,, is negative, of O(r:)  (see (35)), and occurs in 

the two-cell regime with the inner annular outflow directed downward (x, < 0). 
This fold relates to a jump attachment of the outflow to the cone surface (arrow 
A in figure 3 4 .  

(v) The second maximum J1 = Jmi,, is negative, of O(T;l2) (see (43)), and occurs in 
the one-cell regime with the near-surface outflow (figure 3 c). This fold relates to 
a jump separation of the outflow from the cone surface (arrow S in figure 3 4 .  

Now we compare our asymptotic results with numerical calculations for a few 
specific problems and show how the folds disappear as I', decreases. 

4. Swirling flows in cones 
The Introduction mentions vortex suction devices to remove hazardous fumes from 

a distant localized region. For instance, during a welding process it is necessary to 
remove 90CL1500 m3 h-' of air from a region near an electric arc. Vortex suction can 
be more effective than a conventional vacuum cleaner owing to the very low pressure 
created by swirl in the near-axis region. The device creates a long-range 'focused' 
suction because velocity generated by a momentum source decays as r-' while velocity 
generated by a mass sink (in typical kitchen suction) decays as r-'. However, vortex 
suction has an undesirable feature: the possibility of unexpected jumps between flow 
regimes can lead to blowing on the hazardous fume instead of sucking it out. Keeping 
in mind this problem and the devices described in 5 1 we consider two specified cases 
of the conically similar solutions. First, the flow geometry like that shown in figure 1 (b) 
but for a specific value of BC (we choose 45" as an intermediate value) is studied. 

4.1. Flow regimes inside the 8, = 45" cone 

4.1.1. Numerical results at r, = 100. 
We fix swirl at the surface at the rather large value rc = 100 and consider the 

dependence of the solutions on the dimensionless flow force 4. Figure 8 shows the 
relation between J1 and Re, = rv,,/v, where v,, is the maximal radial velocity at a 
fixed distance r from the apex. The insets in figure 8 show all typical forms of the radial 
velocity profiles and the meridional motion patterns. The solid curve in the main plot 
of figure 8 corresponds to the numerical calculations. The broken lines are asymptotes 
as r, + co, which follow from the analytic solutions of 0 3 (dashed line 1 A and the close 
branch of the solid curve are terminated at J1 z lo4 in figure 8 to avoid a possible 
confusion at curve intersections). There are four solutions in the range 10490 < J1 < 
17410, between points B and C, as the asymptotic analysis has predicted. 

The asymptotes help to clarify the arrangement and meaning of these four branches 
of solutions. Asymptote 1 A is for the one-cell regime whose typical streamline is shown 
in figure 1 (b). For this regime the maximum of the radial velocity occurs at the surface, 
i.e. Re, = Re,, and the relation for 1A follows from (50) with x, = 1/2/2: 

Re, = (9/2)'13 J;l3 

This corresponds to a strong outflow along the surface and a nearly uniform inflow 
inside the cone (see the sketch for 1A in figure 8). Swirl is weak compared to the 
meridional motion. Such a regime is relevant for the above described suction device, 
but unfortunately is not unique and possibly unstable. 
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FIGURE 8. Numerical (solid curve) and asymptotic (dashed curves) results for the dependence of the 
maximal radial velocity Re, on flow force J1 for the flow inside cone 0, = 45" at r, = 100. Inset 
sketches show flow patterns for branch 1A and folds B and C. 

The solid curve in figure 8 approaches 1 A as J1+ GO and has turning point F at 
4 = 122. This value is smaller than Jminl = 410 calculated using (43) and shown by line 
M ,  in figure 8. The difference between the numerical and asymptotic results is 
remarkable because J1 is rather small at F. The flow separation from the cone occurs 
at point s, in figure 8. The next two branches of the solid curve are positioned near 
asymptote 2A. This asymptote is for the two-cell regime and its equation follows from 
(19) and (35) with x, = 1/2/2: 

Re, = frt(x,- 1/2/2),(1 +x,)-'(l- 1/2/2)-27 

~ 1 =  gr:X,(X,- 1/2/2)3(1 -X,)*/yi - 1/2/2)-3(1 +x,)-5/2, 

where x, serves as a parameter. The turning point of 2A is closer to the turning point 
C of the solid curve than F is to M, because A,,, is significantly larger than Jml,,. If 
one takes into account the contribution from the near-surface boundary layer given by 
(34), then the asymptotic value of A,,, increases as shown by line M, in figure 7. 
Therefore, the asymptotic results provide the upper and lower estimates for the 
numerical value. The nearest inset shows the meridional flow at C. 

As one goes from s, through F and C to turning point B along the solid curve in 
figure 8, separating angle 6, (see the sketch near C) decreases from Bs = Bc = 45" at s, 
to Bs = 17" at C and becomes zero at point s, corresponding to jet attachment to the 
axis. Above s,, the flow pattern is one-cellular with an inflow near the surface and a 
strong outflow near the axis (see the sketch for point B). 

As TC+ GO, the near-axis swirling jet has the limiting pattern of Long's vortex. 
However, the value of Jmin2 is different from that in Long's jet owing to the 
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FIGURE 9. (a) Numerical (solid curves) and asymptotic (dashed curves) results for folds B, C, and F 
projected on the control parameter plane. (b) Maximal radial velocity Re, versus flow force J, for the 
swirl-free flow ascending (curve 1) and descending (curve 2)  near the axis. 8, = 45". 

contribution of the external flow. Asymptotic relations (55)  and (69) give, for I'c = 100 
and x, = l / d 2 ,  the value of shown by line M, in figure 8. It coincides, within the 
accuracy of the drawing, with the numerical results for point B. The flow regimes in 
the vicinity of and above point B are extremely undesirable for the suction device 
because they cause spreading of hazardous fumes instead of collecting them. 

As 4 -+ 00 along the upper branch of the solid curve in figure 8, the maximum of the 
radial velocity occurs on the axis, i.e. Re, = Re,, and swirl becomes weak near the axis 
compared to the meridional outflow whose pattern approaches that of Schlichting's 
round jet. Asymptote 3A corresponds to the relation Re, = i4, which is valid for 
Schlichting's jet. If one draws curve 1 of figure 7(b) in figure 8, then after rescaling and 
shifting ( 5 9 ,  the upper branches of curve 1 and the solid curve in figure 8 would merge 
within the accuracy of the drawing. Thus, we see good quantitative agreement between 
the numerical and asymptotic results at r, = 100. This is a good check for both the 
calculation methods. The asymptotic theory is not expected to reveal how the folds 
disappear at small values of J1 and r,. This seems to be a subject for numerical 
calculations only. 

4.1.2. Behaviour of the folds at small r, 
Solid curves B, C ,  and F in figure 9(a) show projections of the corresponding folds 

(see figure 8) on the plane ( M ,  r,) for r, < 100. We use Long's parameter M as the 
abscissa for a compact presentation of the calculated data. Curves B and C in figure 
9(a) meet and terminate at cusp point K (I-', = 45, M = 6.8). Note that M is 
significantly larger on the entire curve B than M,, = 3.742. Moreover, there is no finite 
limit for M as I'+ co along curve R. Dashed curve MI in figure 9(a) shows the 
asymptotic relation for fold B, M = 3.19 +0.74 In r,, resulting from (55) and (69) with 
x, = 1 /42 .  One can see that B and MI coincide within the accuracy of the drawing 
except around K. Dashed curve M, shows the asymptotic relation for fold C, M = 
0.0964~,+0.6451n~,,  resulting from (34) and (35) with x, = l / d 2  and x, = 0.9576. 
The gap between C and M, is mostly due to contributions, to 4 of O ( c )  from the 
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inviscid regions x, < x < x, and x, < x < 1, which are ignored in M,. The intersection 
of M, and M, gives the asymptotic prediction K, for the cusp point K. 

In contrast to curves B and C that terminate at K, curve F extends up to r, = 0. 
This means that for small and even zero swirl, there are two solutions having the same 
flow force (figure 9b). Note that for r, < 40 the minimum value of the flow force 
(shown by curve F) is negative. The flow force can be integrated at a section 
z = rcos 8 = const: 

J = 27cp (v," + p / p  - 2v av,/az) s ds = 27cpv24, s = r sin 8. s 
Since the first term (the contribution of the momentum flux) is positive, the negative 
value of 4 means that the contributions of pressure and viscous stresses dominate for 

Figure 9(b) shows the relation between 4 and Re, at r, = 0. There are two curves 
starting from the origin: curve 1 corresponds to the flow pattern with the near-axis 
outflow (see the sketch for B in figure S), and curve 2 corresponds to the opposite flow 
direction (figure lb) .  The results shown in figure 9(b) help us to conjecture on the 
stability features of the regimes. Since the origin in figure 9 corresponds to fluid at rest, 
we expect that near the origin both the curves are related to stable regimes. In the 
vicinity of fold F, where the tangent bifurcation occurs, the general theory says that at 
least one of the branches corresponds to unstable solutions. If the lower branch of 
curve 2 corresponds to stable solutions, then the upper branch of curve 2 must 
correspond to unstable ones. 

To test these conjectures, one needs to study the stability and this will be a subject 
of our future work. Here, having in view only a special class of disturbances that can 
induce transitions between the above regimes, we assume that the stability of the 
solutions considered changes at the folds. Then as curve 1 figure 9(b) corresponds to 
the upper branch of the solid curve in figure 8, we assume that solutions are stable for 
this branch, unstable for branch BC, again stable for CF, and unstable for the branch 
near 1A. 

By applying this consideration to the suction, we see that the flow regime that seems 
most favourable for suction (figure 1) is unstable. The flow pattern that corresponds 
to branch CF in figure 8 (see sketch for C) is also quite acceptable for the suction device 
because there is an inflow near the axis. This regime seems to be stable to small 
disturbances at least in some range of the flow force. However as J1 increases, a jump 
transition can occur from suction to blowing (see the vertical arrow from C in figure 
S), and a jump from blowing to suction can occur as J1 decreases (see the vertical arrow 
from B in figure 8). Within the bi-stability range (between B and C in figure 8) finite- 
amplitude disturbances can cause transitions in both directions. Consider a fixed value 
of J1 within the bi-stability range. Since solution S,  on the upper branch (i.e. above B) 
of the solid curve in figure 8 is assumed to be stable, this means that S,  is stable also 
with respect to small but finite-amplitude disturbances. The difference between 
solution S,, (corresponding to branch BC) and S,  can be considered as a finite- 
amplitude disturbance. As this disturbance transforms one steady solution (S,)  to 
another (SBc) ,  one can consider the difference, S,,-S,, as a kind of neutral 
disturbance. Therefore, a disturbance of amplitude larger than that of S,, - S,  can 
cause the transition from S,  to S,, (corresponding to branch CF). Then a disturbance 
of amplitude larger than that of S,,-S,, can cause the back transition from S,, 

Such transitions are indeed observed (Spotar' & Terekhov 1987); to avoid them 

r, < 40. 

to s,. 
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FIGURE 10. Numerical (solid curve) and asymptotic (dashed curves) results for dependence of 
maximal radial velocity Re, on flow force J1 for the flow inside cone 0, = 135" at r, = 50. Sketches 
show flow patterns for folds A and C. 

another version of the suction device was invented (see figure lc). To study flow 
regimes for this device we consider the next simplified model. 

4.2. Flow regimes outside the 45" cone 
4.2.1. Jump $ow separation from the surface 

Although the model considered here differs from that in the previous section only in 
the angle 0, (see figure 1 d),  this leads to a very different map of flow regimes. Figure 
10 shows the relation between J1 and Re, at r, = 50. Again the solid curve corresponds 
to the numerical results and the dashed curves are asymptotes similar to those in figure 
8 but calculated for x, = - 142 .  The drastic difference with the case x, = 1 d2 is that 
the solid curve has now four folds: A, B, C, and S, and the flow force can decrease 
down to -a. This occurs as Re, increases along the branch of the solid curve in 
figure 10 that is near asymptote 1A. The equation for 1A follows from (50) with 
x, = - 1 / 4 2 :  J1 = -(2'/'/3)ReZ2. The flow pattern is like that shown in figure 3(c) ,  
i.e. there is a strong downflow in the near-surface boundary layer and slow downflow 
elsewhere. Swirl is weak in comparison with the meridional motion. Such a regime is 
not favourable for the suction device because the inflow velocity near the axis is small 
compared to the outflow velocity near the surface and therefore the efficiency of the 
vortex suction is small. 

The solid curve in figure 10 has fold S at J1 = -54. The asymptotic prediction is 
Jminl = -410 calculated using (49) and shown by line M,. The difference between 
the numerical and asymptotic results is remarkable because I J 1 I  is small. The flow 
regime becomes two-cellular at separation point s, that is close to but above S .  The 
two-cell regimes correspond to asymptote 2A, and the next three branches of the solid 
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curve are positioned near 2A. The equations for 2A follow from (19) and (35) 
with x, = - 1/2/2: 

Re, = iI'z(x,+ 1/2/2),(1 +x,)-'(l+ l/d2)-,, 
y;x,(x,+ 1/42)3(i -xs)l/*(i + 1/2/2)-3(1 + X J - ~ / ~ ,  

where x, serves as a parameter. If one moves along the solid curve, as J1 increases from 
- co approaching zero and reaches S, then the jump occurs. This jump, shown by an 
arrow from S to branch AC, corresponds to the transition from a flow pattern as in 
figure 3 (c) to a pattern as in figure 3 (b). Since J1 is small and negative, separation angle 
8, is slightly larger than 90" in the final two-cell regime. Therefore, this jump is the 
abrupt flow separation from the surface causing the angular direction of the outflow 
to change by nearly 45". 

4.2.2. Jump $ow attachment, vortex consolidation, and vortex breakdown 
If one moves along branch AC of the solid curve in figure 10 as J1 decreases and 

reaches turning point A, then another jump transition occurs - shown by the arrow 
from A to the branch near 1 A. The minimum value of J 1 ( =  - 986) at A is close to that 
for 2A and corresponds to the two-cell flow with x,  = -0.141. The sketch in the left 
lower corner of figure 10 shows the flow pattern and distribution of the radial velocity 
for fold A. This is the initial flow state before the jump attachment of the outflow to 
the cone, and a final state is the one-cell flow as shown in figure 3(c). 

The other transitions, vortex consolidation and vortex breakdown related to folds C 
and B in figure 10, are the same for any value of x,  (see figure 8). Fold C in figure 10 
corresponds to the maximum of J1 that is positive and large: J1 = 3092 at r, = 50 and 
J1 = 0.0384r: as r,+ co. The sketch in the right lower corner of figure 10 shows the 
flow pattern and distribution of the radial velocity for point C. The position of the 
separating cone, x, = 0.753, at C is close to x, = 0.747 as predicted by the asymptotic 
analysis, but values of J1 differ significantly for C and the corresponding the turning 
point of curve 2A in figure 10. The difference is due to a contribution from the outer 
flow that is neglected for 2A. Line M, in figure 10 shows the asymptotic value of A,,, 
for which the contribution from the near-surface boundary layer is also included. The 
difference between M, and C is due to the contributions of the potential flow and 
vortical inviscid flow. Again, the asymptotic results provide the upper and lower 
estimates for the numerical value. 

Regimes corresponding to the vicinity of C along branch AC of the solid curve in 
figure 10 seem most favourable for the suction device: the inflow occurs in a rather 
narrow near-axis region with a comparatively large radial velocity (e.g. see the sketch 
for C in figure 10) that provides the long-range suction needed. Unfortunately, like the 
8, = 45" case, there is also a possibility of the transition from suction to blowing due 
to vortex consolidation. However, if a value of J1 is chosen in the middle part of branch 
AC (that is large at high I',) then the probability of the jump is smaller. 

When one moves along the solid line in figure 10 from C to B, angle Bs of the 
separating surface decreases and becomes zero at point s,. The most striking difference 
with the 8, = 45" case (figure 8) is that now J1 is negative at B even though the 
corresponding flow is directed forward with a strong outflow near the axis (Long's jet). 
Figures 2, 3 (a) and 7 (a) show a typical streamline and the distribution of the radial 
velocity for point B in figure 10. The negative value of J1( = - 273) at B is due to the 
contribution from the near-surface boundary layer as the asymptotic analysis has 
shown. Relations (55) and (69) at x,  = - 1 4 2  give the value of Jmin2 shown by line M, 
in figure 10. The intersection point of asymptotes 2A and 3A (Re, = $4) together with 
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M, provide the upper and lower estimates for J1 at B. Although the negative sign of J1 
in the vicinity of B has already been predicted in $ 3 ,  the following analysis allows us 
to investigate the nature of this unusual swirling effect in more detail. For this we first 
study the pressure distribution. 

4.2.3. Strong variation of pressure near the surface 
At first sight, the negative value of J1 is due to the contribution from the pressure. 

The pressure distribution near the axis (inside Long’s boundary layer) is universal for 
any x, ; however, pressure profiles outside the Long’s jet are qualitatively different for 
x, > 0 and x, < 0. Substituting (52 )  in (8) and neglecting the linear terms we get the 
asymptotic pressure distribution in the inviscid core, x, < x c 1 ,  as r, --f co : 

q. 8 = -- y; [( x-xx,)-xx,(l -x)]/[(l -&)(I -x2)]. 

This, in particular, yields the pressure value at the cone surface predicted by the 
inviscid theory, 

(71) 
Therefore, when x, > 0, pressure is positive near the surface and provides a positive 
contribution to the flow force. Since the contribution of the momentum flux is also 
positive, and the contribution of the shear stresses is negligible for large I‘,, the flow 
force is positive in the near-surface boundary layer. This makes the total flow force 
positive because the contribution of the near-surface region, being O(T: In TJ, 
dominates contributions of the other regions that are of O(T,2). In contrast, qei is 
negative for x, < 0. 

In the near-surface boundary layer, the linear term - x V  in (8) also contributes to 
the pressure. By using (23)  in (8)  and allowing r, + 00 we obtain 

4 e i  = fC x,/U - 4. 

q = - -  ;r; ( W” - W W )  xc/( 1 - XZ). 

It follows from differentiation of (25) that W”- WW’ = - 1, so that the pressure is 
constant across the near-surface boundary layer and equals qcb = xJ(1 -xE). 
Comparison with (71) shows that the inviscid and boundary layer predictions of 
pressure coincide, in agreement with the general theory (Schlichting 1979). 

Figure 11 (a) shows the pressure distribution corresponding to fold B in figure 10. 
The solid curve in figure 1 1  (a) shows the numerical result at r, = 100, and the dashed 
line shows the inviscid solution (70). One can see that the numerical and asymptotic 
results are very close. On the surface (71) yields qc2 = -0.707 and the numerical 
result is qc2 = -0.746. On the axis, the inviscid limit gives qc2 = - co (see (70)), but 
the numerical value is 4 c 4  = - 0.0194, which coincides with Long’s boundary-layer 
result. The pressure maximum near x = 0 has a clear physical reason. The pressure 
gradient balances the centrifugal force (i.e. cyclostrophic balance) ; thus pressure drops 
as the distance from the symmetry axis decreases. On a sphere r = const, x = 0 is a 
position most remote from the axis. As 1x1 increases, the distance decreases, and 
pressure drops as figure 1 1  (a)  shows. At xc = - 1, (70) becomes exactly symmetric with 
respect to x = 0: q2 = -fT:/(l-x2). Thus, for cones with x, < 0, pressure drops not 
only near the axis but also near the surface, and figure 11 (a) shows that this drop can 
be significant. 

4.2.4. The nature of ‘anti-rocket’ thrust 
The negative value of J1 in the vicinity of point B in figure 10 means that the flow 

produces a thrust -4 acting on the cone in the jet direction. This contrasts with the 
swirl-free jet emitted by a rocket and providing a thrust opposite to the jet direction (we 
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call this the anti-rocket effect). To understand the role of pressure in the negative value 
of 4, it is useful to compare distributions of pressure and the flow force. Figure 11 (b) 
shows Me = 2 x J ( 8 ) c 2  versus 0 for r, = 100. Here J(8) is a contribution to the flow 
force from interval (0, S),  so that 4 = J(8,). As 0 increases, Me first drops (due to the 
pressure contribution), then increases (due to the momentum flux contribution), 
reaches its maximum (which corresponds to Long’s value for the fold, M,, = 3.742, 
shown by dashed line L in figure 11 b), gradually decreases in the inviscid core, and 
finally drops steeply in the near-surface boundary layer. The latter drop seems to be 
related to the pressure drop near x = x, (8, = 135”) in figure 11 (b). However, it follows 
from (7) that negative q for negative x gives a positive contribution to j ,  and there- 
fore a positive contribution to 4. This means that the direct contribution from the 
pressure to the flow force cannot provide the ‘anti-rocket’ effect. The other term of 
(7), xu2, yields a negative 4. Indeed, this term is negative for x < 0, and, due to (23), 
u = -v - U(T;l3). Therefore, term xu2 is 0(T:/3) and larger than q which is U(r,2). 
Thus 4 is negative due to the momentum flux. 

Nevertheless, the negative pressure (induced by swirl) plays a crucial role in the anti- 
rocket thrust because the low pressure induces high radial velocities near the surface. 
In swirl-free jets the radial velocity is bounded: Re, = - 7.67 for the Squire jet and IRe,( 
decreases as 8, increases up to Re, = -2 for the Landau jet. The radial velocity u is 
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FIGURE 12. (a) Numerical results for the control parameter values corresponding to folds A, B, C, and 
S (solid curves) and flow separation from the axis s, and the cone s, (dashed curves). (b) Maximal 
radial velocity Re,,, versus flow force J1 for the swirl-free flow inside cone 13, = 135”. 

small outside the near-axis jet in swirl-free flows. This yields that a positive 
contribution to the flow force from the near-axis jet dominates a negative contribution 
from the near-surface region. 

An inflow induced by swirl is the well-known ‘wall’ effect in rotating flows. The 
reason is that the pressure gradient is not balanced by the centrifugal force at the wall 
due to the no-slip condition. However, the development of the near-surface jet in our 
case is different from the wall effect because the no-slip condition is not invoked. It 
seems paradoxical, but the near-surface jet develops with the impermeability condition 
as follows from the asymptotic analysis in 33.2.1. The impermeability causes the 
‘square-root’ law for the inviscid stream function near the surface (see, e.g. (52)), i.e. 
the singularity of the radial velocity. This singularity smoothed by viscosity leads to the 
strong near-surface inflow. On the other hand, swirl makes the near-axis jet wider and 
weaker. As a result, a negative contribution to the flow force from SL dominates a 
positive contribution from Long’s jet. Thus owing to the specific geometry (x, < 0) and 
the swirl action, the flow produces thrust in the direction of blowing. 

4.2.5. Cusp catastrophes 
Curves A, B, C, and S in figure 12(a) show projections of the respective folds on 

plane ( M ,  r,) for r, < 50. Again we use Long’s parameter M as the abscissa for a 
compact presentation of the calculated data. Curves B and C meet and terminate at 
cusp point K, (4 = - 1 1.34, rc = 1 1 .8). Note that M is negative along curve B up to its 
termination point. For high r,, curve B approaches the asymptote M = 1.67 - 0.74 In r, 
that follows from (55) and (69), and curve C approaches the asymptote M =  
0.241rc-0.3451nrc+3.77 derived with the help of (34) and (35). Jump vortex 
breakdown and consolidation do not occur for r, < 11.8. In contrast, flow separation 
and attachment related to changing of flow patterns (a-c) in figure 3 exist up to 
infinitesimal values of J1 and r,. In particular, transition from the consolidated swirling 
jet (figure 3 a) to the two-cell regime (figure 3 b), which is flow separation from the axis, 
occurs (at curve s, in figure 12a) for arbitrary small 4 and r, as well but without jumps 
and instability. 

Curves A and S in figure 12(a) meet and terminate at cusp point K, (4 = - 1.52, 
rc = 4.79). For high rc, curve A approaches the asymptote M = -0.O473rc -0.67 In r, 
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which follows from (34) and (35). The asymptote for curve S, M = -2.63C1l2, follows 
from (43). Transition from the one-cell flow (figure 3c) to the two-cell regime (figure 
36), which can be interpreted as flow separation from the cone, and the opposite 
transition (flow attachment) occurs (at curve s, in figure 11 a) for r, < 4.79, also 
without jump and instability. 

In the region between curves B and S in figure 12, there are five solutions at each 
point ( M ,  r,). However, contrary to case 8, = 45", here the solution is unique for small 
r, (below point K2 in figure 12a). The numerical calculations of Re,(J,) at r, = 0 
(solid curves 1 and 2 in figure 12b) together wit5 asymptotes 3A (Re, = :A) and 1A 
(4 = -(21/2/3)Rez2) as Re,+ co (broken curves in figure 126) clearly show the 
solution uniqueness at any given value of 4. 

Pending a detailed stability study, we can conjecture about stability features of the 
solutions obtained. Since there are no folds of curves 1 and 2 in figure 12(6), the 
corresponding solutions are expected to be stable. Then using the same arguments as 
in the case (9, = 45", we suppose that the upper branch of the solid curve in figure 10 
corresponds to stable solutions, branches BC and AS correspond to unstable solutions, 
and the remaining branches correspond to stable solutions. These are reasons why each 
fold in figure 10 relates to a jump transition between regimes in the directions shown 
by the arrows in the figure. The jump vortex breakdown and consolidation are similar 
to those found in SH for a tornado model. The two other jumps related to flow 
separation and attachment are new. Hysteretic transitions related to near-wall 
separation are not unusual. A well-known example is the so-called 'drag crisis' for flow 
over a sphere or a cylinder. However, here the jump separation and attachment occur 
due to the influence of swirl on the near-surface meridional motion. 

Thus, our model analysis of the suction devices shows that there is a wide range of 
flow force and swirl for which the flow pattern is favourable. Inside this region, the 
favourable flow pattern seems to be stable to small disturbances. However, there are 
bi-stability and ' tri-stability ' (three stable regimes coexisting at the same values of 
and r,) in the region, meaning that finite-amplitude disturbances can switch regime to 
those with undesirable flow patterns. Besides, jump transitions are unavoidable at 
boundaries of the region. These hydrodynamic features must be carefully taken into 
account in the design of such devices. 

5. A flow driven by a half-line vortex 
5.1. Modification of t h e j o w  force 

Now we consider the special case, x, = - 1, when the cone collapses to a half-line 
vortex. This problem is interesting in both its fundamental and applied aspects. It was 
first studied by Goldshtik (1979) to model outflows of vortex chambers (however, only 
for small parameter values) and then by Paull & Pillow (1985) and Sozou, Wilkinson 
& Shtern (1994) as a fundamental problem. There is a difficulty related to the flow 
force. If one tries to calculate the flow force at a sphere r = const by applying (7) with 
x, = - 1, then the integral in (7) diverges. The reason is that u has a logarithmic 
singularity and u' = - a c / ( l  +x)+ O(1) has a pole at x = - 1. The divergence is due 
to term xu' in (8), i.e. the viscous contribution. 

There are different ways to overcome this difficulty. Paull & Pillow (1985) removed 
the singularity by taking the difference between the general flow force and its value for 
a special problem. However, the physical meaning of this procedure is unclear. The 
other way is to neglect the viscous terms in (8). This seems to be reasonable for high- 
speed flows. However, there is the logarithmic singularity for u at any small r, 
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FIGURE 13. (a) Schematic of tornado reproduced from Burggraf & Foster (1977) where I is a potential 
vortex, I1 is a boundary layer, I11 is an eruption zone, IV is a vortex core (not to scale), and V is a 
reverse-flow bubble. (b)  Model used in the present paper where 1 is a half-line vortex, 2 is a plane 
where the momentum flux is given, 3 and 4 are typical streamlines of the meridional motion. 

excepting I‘, = 0 (i.e. Landau’s jet). Goldshtik (1979) considered the flow force J ,  
acting on a plane z = const > 0 that does not intersect the half-line vortex. A value of 
J ,  can be found with the help of (7): if J1 is integrated from x = 0 to x = 1, then J ,  = 
J1 (e.g. see SH). The control parameter J ,  is acceptable for swirling jets flowing out from 
the vortex chamber as in figure 1 (a). It is not relevant for the case shown in figure 1 (c) 
because J ,  does not help to predict the value, or even sign, of the thrust (see $4.2.4). 

Another problem where J ,  seems to be relevant is a model of a tornado top that is 
closely related with Long’s formulation. This interpretation of Long’s vortex was 
suggested by Burggraf & Foster (1977, their figure 1 is figure 13a here). Similar flow 
patterns in tornadoes have been reported by Snow (1982) and Davies-Jones (1986). 
Here we consider a model where the vortex core IV is idealized as a line vortex that 
terminates at the boundary between IV and the reversed-flow bubble inside region V 
(figure 13 a). Also we assume that the ground is far from the bubble, place the reference 
frame origin at the top of the line vortex, and extend the line vortex to - 00, as figure 
13 (b) shows. Thus we come to the problem formulated in 0 2 with x, = - 1, but now we 
use J ,  = Sijdx as the control parameter, where j i s  defined by (7)-(10). We show below 
that this problem appears to be an excellent generalization of Long’s original 
formulation for the full Navier-Stoke equations and an infinite domain. 

5.2. Hysteresis 
Here we use a different algorithm from that described in 52.3. The integration runs in 
both directions from x = x, with $(xJ = 0 and some tentative values of T(x,), r’(x8), 
F(x,), and F’(x,). Then these values are adjusted by the shooting method to satisfy 
$( 1) = r(1) = $( - 1) = 0 and r( - 1) = T,. In this procedure, x, is a free parameter, 
and then one calculates 4. Figure 14 shows a typical distribution of stream function 
(curves 1) and swirl (curves 2) for the two-cell regime with x, = 0.71 at r, = 50. The solid 
lines show the numerical results and the dashed lines show asymptotic inviscid solutions 
(14) and (1 6) with x, = - 1 and y98 = :I‘c( 1 - 

One can see that the solid and dashed lines coincide in figure 14 outside the viscous 
inner layer near x = x,, where analytical solutions r = :r,( 1 - tanh 9 and (1 8) are 
valid. The product of these solutions with (14) and (16), respectively, coincides with the 
numerical solutions within the accuracy of the drawing in figure 14. This agreement 
serves as a check for both numerical and analytical calculations. 

Figure 15 shows, for r, = 50, the numerical (solid curves) and asymptotic (dashed 
curves) relations between characteristic velocities and 4. Figure 15(a) shows the 

which follows from (1 6 c). 
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FIGURE 14. Distributions of stream function $ and circulation r for the model shown in figure 
13(b) at 6, = 45 and r, = 50 (solid curves). Dashed curves are asymptotes as re+ 03. 

dependence of u ,  = Z V ~ , ~ , J V  is the maximal swirl velocity at z = const > 0). 
Curve 2 corresponds to relation u, = I',(3J,/128)'/2 which is valid for a weakly swirling 
near-axis jet (SH). 

It follows from (29) that 
J ,  = r;x,(l -X3""12 (72) 

and from (14) that u, = rcx,/(l - ~ , 2 ) l / ~ .  Eliminating x, yields the asymptote 
J ,  q3 = (u,/Tc)/{ 12[ 1 + ) u , / ~ J ' ] }  shown by curve 3 in figure 15 (a).  In particular, 
the asymptote yields that the flow force of the two-cell regimes reaches its maximal 
value, J,,,, = r:/24, at 0, = 45" with v, = rc. 

Figure 15(b) shows the maximal radial velocity u,. For the case considered, 
x, = - 1, the asymptotic value u, for the annular jet does not depend on x, and J,. 
Relation (19) yields u, = 1 /8 which corresponds to dashed curve 3 in figure 15(b). The 
numerical results for two-cell regimes are quite close to this asymptote. As x, increases, 
u, also increases, and in the one-cell regime the maximum of the radial velocity occurs 
at the axis (above the cross on curve 1 in figure 15(b). Dashed line 2 corresponds to 
relation u, = 34/4. 

Figure 15 (c) shows the velocity at the axis, uL. If one moves down from the cross on 
curve 1, then uL changes its sign below fold B. This means the appearance of an inflow 
near the axis. After uL passes its minimum, it increases monotonically as x, decreases. 
We stop our calculations when x, reaches zero because J ,  is not a relevant characteristic 
for a downward jet. The dashed curve in figure 15(c) corresponds to asymptotic 
relations (64) and (67). The results for Long's boundary layer (see figure 7 b  and 7c) 
agree with those shown by the solid curves in figure 15(b, c). They coincide within 
accuracy of the drawing (in the scales of figure 15) up to near point C in figure 15. Fold 
C and the solid curves after C in figure 15 (a-c) cannot be revealed in Long's boundary- 
layer approach. However, values of J ,  are in excellent agreement within a wide area 
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FIGURE 15. Numerical (solid curves) and asymptotic (dashed curves) results for dependence on 
the flow force of (a) maximal azimuthal, (b) maximal radial, and (c) axial velocities. 

around fold B. Before explaining this agreement, which contrasts with the results of 94, 
we study how the hysteresis disappears. 

5.3. cusp 
Curves B and C in figure 16(a) show projections of the corresponding folds on 
parameter plane ( M , r C ) .  The use of Long’s parameter M helps us not only to 
compactly present the data but also to emphasize the good agreement with Long’s case. 
As T‘, decreases, curves B and C meet and terminate at cusp point K ( M  = 3.05, 
r, = 11.5). Near the cusp point, figure 16(b) shows how the folds appear as the 
swirl increases: the values of r, = 11, 11.5, and 12 (curves 1-3) would correspond 
to horizontal lines in figure 16(a) passing below, through, and above point K, 
respectively. Thus we have a generic cusp catastrophe (Arnol’d 1984). 

As r, increases, curves C and B tend to their asymptotes - dashed lines 1 and 2 in 
figure 16(a). Line 1 corresponds to the asymptote for curve C ,  M = nrJ12, which is 
equivalent to (72) with x, = 142 .  Line 2 is Long’s limit, M = ML = 3.742, for fold B. 
In contrast to the tornado model considered in SH and the models of vortex suction 
in $4, there is no gap between curves B and 2 as Tc+ co in figure 16(a). There the gap 
was due to a contribution from the outer flow in the flow force. To understand the 
difference, we have to consider the contribution in this case. The outer flow for Long’s 
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FIGURE 16. (a) Numerical (solid curves) and asymptotic (dashed curves) results for folds B and C (see 
figure 15) projected on the control parameter plane. (b) Dependence of the maximal azimuthal 
velocity on flow force at To = 1 1  (curve I), 11.5 (2), and 12 (3), i.e. below, through, and above cusp 
point K in (a). 

jet is vortical. To find its contribution to J,, we have to integrate j in the interval 
0 < x < 1.  For the particular values x, = - 1 and x, = 1 corresponding to line 2 in 
figure 16(a), (52) yields 

$h = lc.l = r,(l -x3""/2/2. 

By substituting the latter relation in (9) we find that j ,  = 0. This means that Long's 
solution constructed for the near-axis boundary layer is also valid arbitrarily far from 
the axis on plane z = const > 0 for the problem considered. Therefore, this problem 
seems to be the most adequate generalization of Long's problem for whole space and 
for the full Navier-Stokes equations. 

6. Pressure peak in swirling annular jets 
Finally, we consider one more intriguing feature of swirling jets related to an unusual 

pressure distribution. Substituting (16) in (8) and keeping only terms of U ( c ) ,  we find 

(73) 

(74) 

41 = - m x ,  - 4) x - [2x, - (1 + xs) Xel x,)/[(l+ x,) (1 - x:) (1 - x2)1, 

q2 = -r~(x,-X;)/[(l +x)(l -X,)"l -xi)]. 

It follows from (73) and (74) that 

41(x,) = 4 2 ( 4  = - q s o  = - m x ,  - x m 1 +  X J  (1 - x,)2 (1 - x31. 

This means that the inviscid solution for pressure is continuous at x = x, despite the 
jump in the stream function. According to (74), pressure decreases as one moves from 
the axis, x = 1, to the separating cone, x = x,. Now we show that this decrease is 
followed by a large pressure peak in the annular jet. 

Inside the viscous annular jet, (8) can be reduced to 

4 = 4j = - [x, Wx,) + $."1/(1 - x3, (75) 

where only terms of O ( r ; )  are taken into account. Subscriptj denotes that this solution 
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FIGURE 17. (a) Asymptotic solution for the pressure distribution with the angle at x, = 0. Pressure 
distributions at (b) x, = 0 and x, = 0.452 for r, = 100 (curve l), 200 (2), and 00 (3); and (c) x, = - 1 
and x, = - 0.707 for r, = 50 (solid curve, numerical) and r, = 00 (dashed curve, asymptotic). 

is valid inside the jet. We have used in (75) that F’(x) is continuous at x = x, and can 
be treated as the constant F’(x,) = +,“/(1 -x,) across the annular jet. Also, x can be 
replaced by x, inside this jet. Substitution of y? from (18) transforms (75) to 

qj = - y?:[x, + (1 - x,) tanh2 a/[( 1 - x:) (1 - x,)]. (76) 

It follows from (76) that pressure varies strongly across the jet, increasing from its 
value q = - qso outside the annular jet to its maximum q = qj ,  = - x, qso at < = 0. The 
pressure difference, 

Aq = 4 j m + 4 s o  = (1-xs)qso = r:(&-x:)/V +x,>(l -x,)“1 +x,>l, 

is of O(TE). This means that Ap N K 2  and therefore r2Ap/(pK2) is a finite non-zero 
quantity in the inviscid limit. This contrasts with the fact that pressure variations in 
swirl-free jets (and SL, see $4.2.3) is a viscous effect: r2Ap/J vanishes in the inviscid 
limit. 

In the particular case of the swirling jet fanning along the plane x, = 0 the solution 
for pressure is especially simple, 

41 = qz = -q,o/[(1 +XI, qi = -q4sotanh2 t, 430 = ~ ~ X ~ / ( ~ - X C ) ~ ,  

and shown in figure 17 (a). Figure 17 (b, c) shows examples of the pressure distribution 
for positive and negative x,. Curves 1-3 in figure 17(b) (x, = 0, x, = 0.452) relate to 
r, = 100, 200 and 00, respectively. One can see how the pressure peak increases with 
rc. In figure 17(c) (x, = - 1, x, = -0.707), the maximum pressure is positive inside 
the viscous annular jet while pressure is negative outside it due to the swirl action. 
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To illuminate the physical nature of this pressure peak, we consider the meridional 
projection of the momentum equation (i.e. the Navier-Stokes equations for v,) in the 
form 

r-2 a/ar(r2I7,.,) + (r sin @)-I a/aO(sin 8I70,) = 0, (77) 

where (78) 

and I fre  is presented in $2.3. The conical similarity yields that the first term in (77) is 
zero and, therefore, II,,sinO does not depend on 8. Since the annular-jet thickness 
68 - cl, I7,, is constant across the jet in the limiting case 00. Taking into 
account only terms of O(r:) in (78) one has q + @2/( 1 -xi) = const, which is equivalent 
to (75). This means that p v i + p  = const. Thus, the meridional component of the flow 
force is invariant, and this produces the pressure peak. Since vi = uiS is not zero at 
the jet boundary and becomes zero at < = 0, pressure has a peak of height pu& and 
p = pmax -pvi ,  where pmas is the maximum pressure at [ = 0. 

This result does not contradict the boundary-layer theory of jets where the pressure 
gradient is neglected. In the equation for the radial component of momentum, the 
pressure term can be omitted because it is of O(r,2) while other terms are of O(r: ) .  
Nevertheless, the variation of pressure inside the jet can be larger than that in the outer 
inviscid flow. Thus, the pressure peak is a viscous effect despite the fact that the peak 
height has a bounded non-zero value in the inviscid limit. This effect is one more 
example of the so-called 'trigger' action of viscosity when even the mere presence of 
viscosity is crucial. 

= pui + p  - 2pur-'(av8/aO + v,) = (pu2/r2) [q + (7,k2 - 2x$)/( 1 - x2)], 

7. Discussion 
7.1. The physical nature of the jumps 

Our asymptotic analysis and numerical calculations show four kinds of jump 
transitions in swirling flows : vortex breakdown B, vortex consolidation C, flow 
separation S, and flow attachment A. These transitions can be identified in the flow by 
varying a parameter, namely the flow force J1. Although the choice of J1 as a control 
parameter has a reasonable physical background (see 0 1.3), it is convenient in this 
discussion to consider a different parameter to explain the nature of the non- 
monotonic behaviour of J1 and its physical implications. Control parameters varying 
monotonically in the solution manifold are suitable for this purpose. In particular, the 
velocity components at the surface are such parameters since there is a unique solution 
(of the conical class) for given values of re and Re, (Goldshtik & Shtern 1990). From 
this solution one can find J1 and study the features of the corresponding surface in 
parameter space (re, Re,). To examine why 4(I',, Re,) is not a monotonic function, it 
is convenient to fix one of the arguments, say r,, and consider the dependence of J1 on 
the other. However, while this is mathematically tractable, the use of Re, as a control 
parameter is not physically appropriate to study the mechanism of transitions B and 
C. This is because Re, characterizes the velocity at the surface, i.e. away from the near- 
axis jet, while most variation of J1 comes from the jet. It is more relevant to take a 
control parameter characterizing the jet itself and varying monotonically near folds B 
and C. 

For Long's fold (B) we use the maximum radial velocity u,, as the control 
parameter. A dominant contribution to J1 is from the momentum flux, v:, Sj/(27cu2), 
where S, is the area of a jet cross-section projected on a normal-to-axis plane; see (7). 
For Schlichting's jet, S, N E2 - 1/urm resulting in J1 - v,, (see (62)). Therefore J1 



Hysteresis in swirling jets 39 

decreases with v,, until swirl does not change the meridional motion. However, when 
u,, becomes small enough (e.g. in the vicinity of point B in figure 9), the centrifugal 
forces cause the jet to spread. This increase in Sj is not compensated by a decrease in 
v,, because u,, is nearly constant (see (63)). As a result, J1 starts to increase while vrm 
continues to decrease. Therefore, the minimum of J1 in Long's vortex is a result of the 
spreading of the jet by swirl. This prevents a continuous transformation of the near- 
axis jet into a two-cell flow when J1 is a control parameter and J1 decreases; thus, a jump 
vortex breakdown occurs. 

The second extremum (C) of the flow force occurs when 8, becomes sufficiently large 
to decrease the projection area. As 0, approaches 90" (i.e. x, approaches 0), both S, - 
2mYrcos 19, and J I  approach zero (see (35)). Therefore, J1 increases as 8, starts to increase 
from zero, but J1 decreases as 8, approaches 90". The maximum of J1 in the two-cell 
flow is due to a change in the jet direction from nearly parallel to nearly normal to the 
axis. For this reason, transformation of the two-cell flow into a near-axis jet is not 
continuous when J I  is a control parameter and J I  increases, i.e. vortex consolidation 
occurs also by a jump. 

The third extremum (A) is caused by reasons similar to those for the second one. The 
difference is that J1 is negative because the jet is directed downward at A. Initially, 141 
increases with (8, - 90") due to an increase of Sj. However, when the jet approaches the 
surface 8 = 8,, v,, starts to decrease rapidly through strong momentum diffusion 
across the counter-flow. Relation (19) shows that vrm is proportional to (x, - x,)~. This 
causes 141 to decrease as 8, -+ 8, and so the transformation of the two-cell flow into the 
near-surface jet is not continuous when 141 increases. In other words, the jet attachment 
to the surface is abrupt, like the other transitions discussed above. 

The fourth extremum ( S )  occurs when the jet is attached to the surface. For this one- 
cell regime with the jet flowing out near the surface, Re, is a relevant control parameter. 
As Re, goes to infinity, 141 + co as well. Since swirl becomes negligible as Re, + co, (50) 
becomes valid. Therefore, as Re, grows, 141 decreases and increases before and after the 
attachment, respectively. This minimum of 141 occurs due to the opposed flow forces 
of the meridional flow and swirl - an effect similar to that in Long's vortex. A high- 
speed radial jet attracts the ambient fluid (the ejection mechanism) while swirl repels 
the fluid away by the centrifugal force. For this reason, the separation of the swirling 
flow from the surface occurs by a jump too. 

Thus, the non-monotonic behaviour of J1 has clear physical reasons. Knowing this 
behaviour is important for understanding why jump transitions occur in swirling flows. 
Also this knowledge can help to optimize the flow force of vortex devices, e.g. to design 
suction devices with minimal J1. Our results seem useful for such applications despite 
the approximation of realistic flows by conical ones. We expect that the similarity 
used in our study to ease the analysis is not crucial for the observed effects (e.g. the 
jump transitions, anti-rocket thrust and pressure peak) because their physical reasons 
revealed here are valid for non-similar flows as well. (Besides, one may use a local 
similarity approximation for non-similar flows.) 

Now, based on the relations obtained for the flow force, we will discuss the reasons 
for stagnation point propagation upstream when vortex breakdown occurs. 

7.2. Dynamics of stagnation points 
In the initial stages of a tornado's life, a funnel propagates downward to the ground 
from the tornado's cloudbase (Davies-Jones 1982). We model this phenomenon (see 
the schematic in figure 18a) by using a reference frame with its origin at the tip of the 
funnel and idealizing the funnel shape by a cone with the included angle 8 = 8, (figure 
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FIGURE 18. (a) Schematic of a tornado funnel 1 with cloudbase 2 approaching the ground 3; (b) model 
of (a); (c) schematic of recirculation bubble with the rear stagnation point approaching the front 
stagnation point (Wu Wei 1994, personal communication). 

18b). The coordinate frame moves with the tip velocity, which is taken to be a constant. 
Also we assume that the air flow from either side of the cone, 0 = B,, but outside a 
spherical region centred at the funnel tip can be approximated by the similarity 
solutions. The surface of the spherical region consisting of parts S,  and S, (placed 
inside and outside 0 = 8, respectively) is considered as the boundary of the non-similar 
region near the origin. For a strong swirl, Long’s-type vortices develop in both regions, 
8 < 8, and 8 > 8,. The force acting on S,  is directed downward and can be estimated 
by using (55) .  Owing to the anti-rocket thrust (see $4.2.4), the force acting on S ,  is also 
directed downward and can also be estimated using (55). Thus the total force acting on 
the sphere is given by 

J = (2xxC/3 )  pK2 In r,. 
As a rough estimate of J in a tornado, we take x, = 1 (because the funnel angle is small 
at this stage), p = 1 kg mP3, K = lo3 m2 s-l (Davies-Jones (1982) gives K from 5 x 10’ 
to 5 x lo4 m2 s-l for mature tornadoes with lower circulation at early stages of the 
tornado’s growth) and r, = K/v = 100 (Burggraf & Foster 1977). This shows that a 
tornado funnel acting as a ‘cumulative shell’ could hit the ground with a force 
J - lo7 kg m s-’. 

This force driving the stagnation point downstream in the flow geometry shown in 
figure 18(b) may also be a reason for the special deformation of the separation bubble; 
such deformations have been observed in the temporal evolution of vortex breakdown 
in a pipe using numerical calculations of the unsteady axisymmetric Navier-Stokes 
equation (Wu Wei 1994, personal communication). The rear stagnation point of the 
bubble tends to reach the front stagnation point, as figure 18(c) shows schematically. 
This effect is qualitatively similar to the dynamics of a tornado funnel and agrees with 
our results. 

7.3. Folds in the context of vortex breakdown theories 
Consider folds A, B, C ,  S, and the corresponding jump transitions in the context of 
existing theories for vortex breakdown. The notion of vortex breakdown that 
originates from experimental observations is that it is characterized as an abrupt 
increase in the core diameter of a slender vortex filament (Saffman 1992). Different 
theories emphasize different aspects of the phenomenon : the abrupt increase in core 
diameter and the failure of the quasi-cylindrical approximation (or boundary-layer 
approach) as in the near-wall flow separation (Hall 1972); the appearance of a 
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stagnation point and the role of instability (Leibovich 1984); the analogy with hydraulic 
jumps and the relation to inertial wave propagation (Squire 1956; Benjamin 1962; 
Keller 1994). 

All these aspects are present in our particular problem and the solutions obtained. 
The folds imply a failure of conical similarity because the transitions (e.g. shown by the 
arrows in figure 10) cannot be described by similarity solutions. The analogy with 
Hall’s approach can be developed further if one considers quasi-conical flows such that 
I,+, L, and q depend weakly on r in (1). This ‘weak’ dependence on r is analogous to 
the dependence on the streamwise coordiante in boundary-layer theory. For such 
flows, the arrows in figure 10 may be interpreted as transitions from one quasi-conical 
flow (upstream flow) to another (downstream flow). However, the transitions 
themselves are ‘ strongly’ non-similar. 

The jump transitions are related to a flow reversal either near the axis (B and C )  or 
near the surface (A and S); and hence, the stagnation points must be within the 
transition regions. In these situations, both the axial velocity and the azimuthal 
vorticity w+ change sign along the axis. One may prefer to use a criterion based on 
vorticity since w+ is invariant with respect to a moving frame, and such a criterion is 
analogous to the one based on shear stress in near-wall separation and attachment. 
However, w+ can change sign before the transition. For example, as one moves down 
along the upper branch of curve 1 in figure 15 (b, c) approaching B, w+ changes its sign 
at the cross that is beyond B. Thus, the change in the vorticity sign seems to indicate 
that the corresponding regime is close to breakdown or separation. 

Although instability has not been studied here, the general theory claims that if one 
of the fold branches corresponds to stable solutions then the other corresponds to 
unstable ones (Arnol’d 1984). Also, solutions on both branches can be unstable. In 
particular for Long’s vortex, both branches have been found unstable with respect to 
helical disturbances (Foster & Duck 1982, also see Khorami & Triveli 1994 and 
references therein). However, there is a special disturbance (‘ switching’ mode) related 
to the transition between the branches. The stability features of the branches are 
different with respect to this disturbance. This special instability is most interesting in 
the context of our paper. Besides, the ‘switching’ instability also occurs for rather small 
r, (just above the cusps in figures 9 a, 12a and 16a) while the helical instability has been 
found for larger r,. The directions of jumps shown by arrows (e.g. in figure 10) 
correspond to our conjectures regarding the stability/instability of solution branches. 
For example, the upper branch in figure 10 to the right of arrow C seems to be stable 
with respect to the switching disturbance of an arbitrary amplitude. However to the left 
of the arrow, the upper branch solutions are stable only with respect to small- 
amplitude disturbances. 

This stability aspect is close to the concept of the critical states. According to Squire 
(1956), a flow in the critical state can support an infintesimal standing wave. Benjamin 
(1962) showed that the flow force, treated as a variational functional for inviscid flows, 
has zero values of the first and second variations at the critical state. Keller (1994) 
found that there are different lunds of transitions corresponding to the sign of the third 
variation. In a multi-stability region (e.g. in figure 10) differences between solutions 
corresponding to the same value of J1 and I‘, may be considered as neutral standing 
finite-amplitude disturbances switching between steady solutions. As one approaches 
a fold, there is a standing disturbance whose amplitude tends to zero. Therefore, the 
folds correspond to the critical states (Saffman 1992). Besides, the jumps, related to 
maxima and minima of the flow force in figure 10, may correspond to the classification 
used by Keller. Since the controlling parameters are the same for flow regimes before 
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and after the jumps, these regimes may be considered as conjugated states (Benjamin 
1962). 

Our results show that the jump vortex breakdown and flow separation from the axis 
occur at nearly the same values of the flow force for a strong swirl (see figure 12a where 
curves s, and B merge as rc+ 00). This supports the point by Stuart (1987) that the 
above theories of vortex breakdown are more complementary than competitive. 

For small rc., however, changes in the flow pattern occur without any jumps and, 
presumably, wlthout any instability. For example, figure 12 (a) shows ‘separation’ 
curves s, and s, for flows inside the 8, = 135” cone. The flow is ascending (figure 3 a) 
to the right of curves s,, two-cellular (figure 3b) between s, and s,, and descending 
(figure 3 cj to the left of curve s,. When r, decreases below the level of both cusps K, 
and K,, there are no jump transitions but flow separation occurs for arbitrarily small 
r,. As r, + 0, J1 = (2n)-l MTf + 0 along both s, and s,. Therefore, even the extremely 
slow flow has different flow patterns as the control parameters change. We do not 
expect any instability for these slow motions. Thus, the jump transitions, flow 
separation and instability are different phenomena although they can occur together. 

We conclude that vortex breakdown is a fold catastrophe. This approach incorporates 
valuable features but is free of the serious limitations of the prior theories discussed 
above. The ‘abruptness’, previously used as a qualitative criterion of vortex 
breakdown, now becomes mathematically rigorous in terms of the fold catastrophe. 
The definition based on the fold makes vortex breakdown distinct from the gradually 
developing internal separation or supercritical instabilities in swirling flows. The fold 
approach also covers jump vortex consolidation while wave theory deals with vortex 
breakdown only. Wave theory considers vortex breakdown to be similar to shock 
waves and hydraulic jumps. However, the opposite jumps are impossible for shock 
waves and hydraulic jumps but do occur for vortex breakdown. Finally, the fold 
approach predicts the disappearance of vortex breakdown (through a cusp catastrophe) 
as swirl decreases. 

8. Conclusions 
(i) Solution non-uniqueness and hysteresis are found for the conical swirling viscous 

flows inside a cone, which model vortex suction devices and tornadoes. 
(ii) The asymptotic analysis shows the existence of four or five solution branches 

conneced by folds, depending on the flow force, circulation and cone angle. This is 
supported by numerical calculations at small and moderate values of 4 and r,. 

(iii) The folds are related to four kinds of jump transitions: vortex breakdown, 
consolidation, flow separation from the cone surface, and flow attachment to the 
surface. 

(ivj A pressure peak of O(r,2) inside a swirling annular jet is discovered. 
(v) The possibility of a swirling jet with anti-rocket thrust is found. 
(vi) The physical nature of the jumps is explained and discussed within the context 

of the prior theories of vortex breakdown. We deduce that vortex breakdown is a fold 
catastrophe. 
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